ترغب بنشر مسار تعليمي؟ اضغط هنا

$mu - e$ Conversion With Four Generations

156   0   0.0 ( 0 )
 نشر من قبل Xiao-Gang He
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study $mu - e$ conversion with sequential four generations. A large mass for the fourth generation neutrino can enhance the conversion rate by orders of magnitude. We compare constraints obtained from $mu - e$ conversion using experimental bounds on various nuclei with those from $mu to e gamma$ and $mu to ebar e e$. We find that the current bound from $mu - e$ conversion with Au puts the most stringent constraint in this model. The relevant flavor changing parameter $lambda_{mu e} = V^*_{mu 4}V_{e4}^{}$ is constrained to be less than $1.6times 10^{-5}$ for the fourth generation neutrino mass larger than 100 GeV. Implications for future $mu -e$ conversion, $mu to egamma$ and $mu to ebar e e$ experiments are discussed.



قيم البحث

اقرأ أيضاً

209 - Joe Sato , Masato Yamanaka 2014
We consider the case that $mu$-$e$ conversion signal is discovered but other charged lepton flavor violating (cLFV) processes will never be found. In such a case, we need other approaches to confirm the $mu$-$e$ conversion and its underlying physics without conventional cLFV searches. We study R-parity violating (RPV) SUSY models as a benchmark. We briefly review that our interesting case is realized in RPV SUSY models with reasonable settings according to current theoretical/experimental status. We focus on the exotic collider signatures at the LHC ($pp to mu^- e^+$ and $pp to jj$) as the other approaches. We show the correlations between the branching ratio of $mu$-$e$ conversion process and cross sections of these processes. It is first time that the correlations are graphically shown. We exhibit the RPV parameter dependence of the branching ratio and the cross sections, and discuss the feasibility to determine the parameters.
In the light of the LHC, we revisit the implications of a fourth generation of chiral matter. We identify a specific ensemble of particle masses and mixings that are in agreement with all current experimental bounds as well as minimize the contributi ons to electroweak precision observables. Higgs masses between 115-315 (115-750) GeV are allowed by electroweak precision data at the 68% and 95% CL. Within this parameter space, there are dramatic effects on Higgs phenomenology: production rates are enhanced, weak-boson-fusion channels are suppressed, angular distributions are modified, and Higgs pairs can we observed. We also identify exotic signals, such as Higgs decay to same-sign dileptons. Finally, we estimate the upper bound on the cutoff scale from vacuum stability and triviality.
104 - Masato Yamanaka 2015
We consider the case that $mu$-$e$ conversion signal is discovered but other charged lepton flavor violating (cLFV) processes will never be found. In such a case, we need other approaches to confirm the $mu$-$e$ conversion and its underlying physics without conventional cLFV searches. We study R-parity violating (RPV) SUSY models as a benchmark. We briefly review that our interesting case is realized in RPV SUSY models with reasonable settings according to current theoretical/experimental status. We focus on the exotic collider signatures at the LHC ($pp to mu^- e^+$ and $pp to jj$) as the other approaches. We show the correlations between the branching ratio of $mu$-$e$ conversion process and cross sections of these processes. It is first time that the correlations are graphically shown. We exhibit the RPV parameter dependence of the branching ratio and the cross sections, and discuss the feasibility to determine the parameters.
We compute the non-perturbative contribution of semileptonic tensor operators $(bar q sigma^{mu u} q)(bar ell sigma_{mu u} ell)$ to the purely leptonic process $mu to e gamma$ and to the electric and magnetic dipole moments of charged leptons by ma tching onto chiral perturbation theory at low energies. This matching procedure has been used extensively to study semileptonic and leptonic weak decays of hadrons. In this paper, we apply it to observables that contain no strongly interacting external particles. The non-perturbative contribution to $mu to e $ processes is used to extract the best current bound on lepton-flavor-violating semileptonic tensor operators, $Lambda_text{BSM} gtrsim 450$ TeV. We briefly discuss how the same method applies to dark-matter interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا