ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the power of an electronic Maxwell Demon

98   0   0.0 ( 0 )
 نشر من قبل Gernot Schaller
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest that a single-electron transistor continuously monitored by a quantum point contact may function as a Maxwell demon when closed-loop feedback operations are applied as time-dependent modifications of the tunneling rates across its junctions. The device may induce a current across the single-electron transistor even when no bias voltage or thermal gradient is applied. For different feedback schemes, we derive effective master equations and compare the induced feedback current and its fluctuations as well as the generated power. Provided that tunneling rates can be modified without changing the transistor level, the device may be implemented with current technology.



قيم البحث

اقرأ أيضاً

We consider a feedback control loop rectifying particle transport through a single quantum dot that is coupled to two electronic leads. While monitoring the occupation of the dot, we apply conditional control operations by changing the tunneling rate s between the dots and its reservoirs, which can be interpreted as the action of a Maxwell demon opening or closing a shutter. This can generate a current at equilibrium or even against a potential bias, producing electric power from information. While this interpretation is well-explored in the weak-coupling limit, we can address the strong-coupling regime with a fermionic reaction-coordinate mapping, which maps the system into a serial triple quantum dot coupled to two leads. There, we find that a continuous projective measurement of the central dot would lead to a complete suppression of electronic transport due to the quantum Zeno effect. In contrast, a microscopic model for the quantum point contact detector implements a weak measurement, which allows for closure of the control loop without inducing transport blockade. In the weak-coupling regime between the central dot and its leads, the energy flows associated with the feedback loop are negligible, and the information gained in the measurement induces a bound for the generated electric power. In contrast, in the strong coupling limit, the protocol may require more energy for opening and closing the shutter than electric power produced, such that the device is no longer information-dominated and can thus not be interpreted as a Maxwell demon.
Maxwell demons are creatures that are imagined to be able to reduce the entropy of a system without performing any work on it. Conventionally, such a Maxwell demons intricate action consists of measuring individual particles and subsequently performi ng feedback. Here we show that much simpler setups can still act as demons: we demonstrate that it is sufficient to exploit a non-equilibrium distribution to seemingly break the second law of thermodynamics. We propose both an electronic and an optical implementation of this phenomenon, realizable with current technology.
Converting information into work has during the last decade gained renewed interest as it gives insight into the relation between information theory and thermodynamics. Here we theoretically investigate an implementation of Maxwells demon in a double quantum dot and demonstrate how heat can be converted into work using only information. This is accomplished by continuously monitoring the charge state of the quantum dots and transferring electrons against a voltage bias using a feedback scheme. We investigate the electrical work produced by the demon and find a non-Gaussian work distribution. To illustrate the effect of a realistic charge detection scheme, we develop a model taking into account noise as well as a finite delay time, and show that an experimental realization is feasible with present day technology. Depending on the accuracy of the measurement, the system is operated as an implementation of Maxwells demon or a single-electron pump.
Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, is studied using the adaptive time dependent density matrix renormalization g roup (t-DMRG) method. It is found that the interplay of the coupling inhomogeneity and the transverse intra-bath interactions results in two qualitatively different coherence evolutions, namely, a coherence preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron spin flip at time $tau$ exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at $sqrt 2 tau$ for the decoherence evolution, respectively. With the diagonal intra-bath interaction included, the specific feature of the periodic regime is kept, while the $sqrt 2tau$-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of $tau$ is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.
We introduce a Maxwell demon which generates many-body-entanglement robustly against thermal fluctuations, which allows us to obtain quantum advantage. Adopting the protocol of the voter model used for opinion dynamics approaching consensus, the demo n randomly selects a qubit pair and performs a quantum feedback control, in continuous repetitions. We derive a lower bound of the entropy production rate by demons operation, which is determined by a competition between the quantum-classical mutual information acquired by the demon and the absolute irreversibility of the feedback control. Our finding of the lower bound corresponds to a reformulation of the second law of thermodynamics under a stochastic and continuous quantum feedback control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا