ﻻ يوجد ملخص باللغة العربية
Consider Vlasov-Poisson system with a fixed ion background and periodic condition on the space variables, in any dimension dgeq2. First, we show that for general homogeneous equilibrium and any periodic x-box, within any small neighborhood in the Sobolev space W_{x,v}^{s,p} (p>1,s<1+(1/p)) of the steady distribution function, there exist nontrivial travelling wave solutions (BGK waves) with arbitrary traveling speed. This implies that nonlinear Landau damping is not true in W^{s,p}(s<1+(1/p)) space for any homogeneous equilibria and in any period box. The BGK waves constructed are one dimensional, that is, depending only on one space variable. Higher dimensional BGK waves are shown to not exist. Second, for homogeneous equilibria satisfying Penroses linear stability condition, we prove that there exist no nontrivial invariant structures in the (1+|v|^{2})^{b}-weighted H_{x,v}^{s} (b>((d-1)/4), s>(3/2)) neighborhood. Since arbitrarilly small BGK waves can also be constructed near any homogeneous equilibria in such weighted H_{x,v}^{s} (s<(3/2)) norm, this shows that s=(3/2) is the critical regularity for the existence of nontrivial invariant structures near stable homogeneous equilibria. These generalize our previous results in the one dimensional case.
Consider 1D Vlasov-poisson system with a fixed ion background and periodic condition on the space variable. First, we show that for general homogeneous equilibria, within any small neighborhood in the Sobolev space W^{s,p} (p>1,s<1+(1/p)) of the stea
The 1D Vlasov-Poisson system is the simplest kinetic model for describing an electrostatic collisonless plasma, and the BGK waves are its famous exact steady solutions. They play an important role on the long time dynamics of a collisionless plasma a
Phase space holes, double layers and other solitary electric field structures, referred to as time domain structures (TDSs), often occur around dipolarization fronts in the Earths inner magnetosphere. They are considered to be important because of th
We consider a system of two coupled ordinary differential equations which appears as an envelope equation in Bose-Einstein Condensation. This system can be viewed as a nonlinear extension of the celebrated model introduced by Landau and Zener. We sho
Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations