ﻻ يوجد ملخص باللغة العربية
We report here results of spectropolarimetric observations of the ~8Myr classical TTauri star (cTTS) TWHya carried out with ESPaDOnS at the Canada-France-Hawaii Telescope (CFHT) in the framework of the `Magnetic Protostars and Planets (MaPP) programme, and obtained at 2 different epochs (2008 March and 2010 March). Obvious Zeeman signatures are detected at all times, both in photospheric lines and in accretion-powered emission lines. Significant intrinsic variability and moderate rotational modulation is observed in both photospheric and accretion proxies. Using tomographic imaging, we reconstruct maps of the large-scale field, of the photospheric brightness and of the accretion-powered emission at the surface of TWHya at both epochs. We find that the magnetic topology is mostly poloidal and axisymmetric with respect to the rotation axis of the star, and that the octupolar component of the large-scale field (2.5-2.8kG at the pole) largely dominates the dipolar component. This large-scale field topology is characteristic of partly-convective stars, supporting the conclusion (from evolutionary models) that TWHya already hosts a radiative core. We also show that TWHya features a high-latitude photospheric cool spot overlapping with the main magnetic pole (and producing the observed radial velocity fluctuations); this is also where accretion concentrates most of the time, although accretion at lower latitudes is found to occur episodically. We propose that the relatively rapid rotation of TWHya (with respect to AATau-like cTTSs) directly reflects the weakness of the large-scale dipole, no longer capable of magnetically disrupting the accretion disc up to the corotation radius (at which the Keplerian period equals the stellar rotation period). We therefore conclude that TWHya is in a phase of rapid spin-up as its large-scale dipole field progressively vanishes.
We present infrared (IR) and optical echelle spectra of the Classical T Tauri star TW Hydrae. Using the optical data, we perform detailed spectrum synthesis to fit atomic and molecular absorption lines and determine key stellar parameters: Teff = 412
We present high spectral resolution ($Rapprox108,000$) Stokes $V$ polarimetry of the Classical T Tauri stars (CTTSs) GQ Lup and TW Hya obtained with the polarimetric upgrade to the HARPS spectrometer on the ESO 3.6 m telescope. We present data on bot
We present high resolution (R ~ 60,000) circular spectropolarimetry of the classical T Tauri star TW Hydrae. We analyze 12 photospheric absorption lines and measure the net longitudinal magnetic field for 6 consecutive nights. While no net polarizati
We present new photometric and spectroscopic data for the M-type members of the TW Hya association with the aim of a comprehensive study of accretion, disks and magnetic activity at the critical age of ~10 Myr where circumstellar matter disappears.
We report here the first results of a multi-wavelength campaign focussing on magnetospheric accretion processes within the close binary system V4046 Sgr, hosting two partly-convective classical T Tauri stars of masses ~0.9 Msun and age ~12 Myr. In th