ﻻ يوجد ملخص باللغة العربية
We report the evolution of the spin resonance in CeCoIn$_{5}$ as a function of magnetic field and lanthanum substitution. In both cases, the resonance peak position shifts to lower energy and the lineshape broadens. For La doping, it is found that the ratio $Omega_{res}/k_{B}T_{c}$ is almost constant as a function of $x$. Under magnetic field the decrease of the excitation energy is similar for H// [1,$bar{1}$,0] and [1,1,1] and faster than the decrease of $T_{c}(H)$. The Zeeman effect found for the field applied along [1,$bar{1}$,0] corresponds to the ground state magnetic moment.
It is shown by detailed inelastic neutron scattering experiments that the gapped collective magnetic excitation of the unconventional superconductor CeCoIn$_{5}$, the spin resonance mode, is incommensurate and that the corresponding fluctuations are
We present nuclear magnetic resonance (NMR) measurements on the three distinct In sites of CeCoIn$_5$ with magnetic field applied in the [100] direction. We identify the microscopic nature of the long range magnetic order (LRO) stabilized at low temp
The influence of La non magnetic impurities on the spin dynamics of CeCoIn$_{5}$ was studied by inelastic neutron scattering. In La-substituted systems, the spin resonance peak (observed at $Omega_{res}=0.55 meV$ in the pure system) is shifted to low
We report $^{115}$In nuclear magnetic resonance (NMR) measurements in CeCoIn$_5$ at low temperature ($T approx 70$ mK) as a function of magnetic field ($H_0$) from 2 T to 13.5 T applied perpendicular to the $hat c$-axis. NMR line shift reveals that b
In zero magnetic field, the famous neutron spin resonance in the f-electron superconductor CeCoIn5 is similar to the recently discovered exciton peak in the non-superconducting CeB6. Magnetic field splits the resonance in CeCoIn5 into two components,