ترغب بنشر مسار تعليمي؟ اضغط هنا

ReProCS: A Missing Link between Recursive Robust PCA and Recursive Sparse Recovery in Large but Correlated Noise

236   0   0.0 ( 0 )
 نشر من قبل Chenlu Qiu
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work studies the recursive robust principal components analysis (PCA) problem. Here, robust refers to robustness to both independent and correlated sparse outliers, although we focus on the latter. A key application where this problem occurs is in video surveillance where the goal is to separate a slowly changing background from moving foreground objects on-the-fly. The background sequence is well modeled as lying in a low dimensional subspace, that can gradually change over time, while the moving foreground objects constitute the correlated sparse outliers. In this and many other applications, the foreground is an outlier for PCA but is actually the signal of interest for the application; where as the background is the corruption or noise. Thus our problem can also be interpreted as one of recursively recovering a time sequence of sparse signals in the presence of large but spatially correlated noise. This work has two key contributions. First, we provide a new way of looking at this problem and show how a key part of our solution strategy involves solving a noisy compressive sensing (CS) problem. Second, we show how we can utilize the correlation of the outliers to our advantage in order to even deal with very large support sized outliers. The main idea is as follows. The correlation model applied to the previous support estimate helps predict the current support. This prediction serves as partial support knowledge for solving the modified-CS problem instead of CS. The support estimate of the modified-CS reconstruction is, in turn, used to update the correlation model parameters using a Kalman filter (or any adaptive filter). We call the resulting approach support-predicted modified-CS.



قيم البحث

اقرأ أيضاً

We study the problem of recursively recovering a time sequence of sparse vectors, St, from measurements Mt := St + Lt that are corrupted by structured noise Lt which is dense and can have large magnitude. The structure that we require is that Lt shou ld lie in a low dimensional subspace that is either fixed or changes slowly enough; and the eigenvalues of its covariance matrix are clustered. We do not assume any model on the sequence of sparse vectors. Their support sets and their nonzero element values may be either independent or correlated over time (usually in many applications they are correlated). The only thing required is that there be some support change every so often. We introduce a novel solution approach called Recursive Projected Compressive Sensing with cluster-PCA (ReProCS-cPCA) that addresses some of the limitations of earlier work. Under mild assumptions, we show that, with high probability, ReProCS-cPCA can exactly recover the support set of St at all times; and the reconstruction errors of both St and Lt are upper bounded by a time-invariant and small value.
Reed-Muller (RM) codes are one of the oldest families of codes. Recently, a recursive projection aggregation (RPA) decoder has been proposed, which achieves a performance that is close to the maximum likelihood decoder for short-length RM codes. One of its main drawbacks, however, is the large amount of computations needed. In this paper, we devise a new algorithm to lower the computational budget while keeping a performance close to that of the RPA decoder. The proposed approach consists of multiple sparse RPAs that are generated by performing only a selection of projections in each sparsified decoder. In the end, a cyclic redundancy check (CRC) is used to decide between output codewords. Simulation results show that our proposed approach reduces the RPA decoders computations up to $80%$ with negligible performance loss.
147 - Vitaly Skachek 2009
A modification of Koetter-Kschischang codes for random networks is presented (these codes were also studied by Wang et al. in the context of authentication problems). The new codes have higher information rate, while maintaining the same error-correc ting capabilities. An efficient error-correcting algorithm is proposed for these codes.
Large-scale antenna (LSA) has gained a lot of attention recently since it can significantly improve the performance of wireless systems. Similar to multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) or MIMO-OFDM, LSA can be also combined with OFDM to deal with frequency selectivity in wireless channels. However, such combination suffers from substantially increased complexity proportional to the number of antennas in LSA systems. For the conventional implementation of LSA-OFDM, the number of inverse fast Fourier transforms (IFFTs) increases with the antenna number since each antenna requires an IFFT for OFDM modulation. Furthermore, zero-forcing (ZF) precoding is required in LSA systems to support more users, and the required matrix inversion leads to a huge computational burden. In this paper, we propose a low-complexity recursive convolutional precoding to address the issues above. The traditional ZF precoding can be implemented through the recursive convolutional precoding in the time domain so that only one IFFT is required for each user and the matrix inversion can be also avoided. Simulation results show that the proposed approach can achieve the same performance as that of ZF but with much lower complexity.
Sparse Principal Component Analysis (PCA) is a dimensionality reduction technique wherein one seeks a low-rank representation of a data matrix with additional sparsity constraints on the obtained representation. We consider two probabilistic formulat ions of sparse PCA: a spiked Wigner and spiked Wishart (or spiked covariance) model. We analyze an Approximate Message Passing (AMP) algorithm to estimate the underlying signal and show, in the high dimensional limit, that the AMP estimates are information-theoretically optimal. As an immediate corollary, our results demonstrate that the posterior expectation of the underlying signal, which is often intractable to compute, can be obtained using a polynomial-time scheme. Our results also effectively provide a single-letter characterization of the sparse PCA problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا