ﻻ يوجد ملخص باللغة العربية
Double-spin asymmetries in exclusive electroproduction of real photons from a transversely polarized hydrogen target are measured with respect to the product of target polarization with beam helicity and beam charge, and with respect to the product of target polarization with beam helicity alone. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe--Heitler process. They are related to the real part of the same combination of Compton form factors as that determining the previously published transverse target single-spin asymmetries through the imaginary part. The results for the double-spin asymmetries are found to be compatible with zero within the uncertainties of the measurement, and are not incompatible with the predictions of the only available GPD-based calculation.
Azimuthal asymmetries in exclusive electroproduction of a real photon from a longitudinally polarized deuterium target are measured with respect to target polarization alone and with respect to target polarization combined with beam helicity and/or b
A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6-GeV electron beam, a longitudinally polarized proton target and the CEBAF Large Acceptance Spectrometer. Targ
Beam-helicity and beam-charge asymmetries in the hard exclusive leptoproduction of real photons from an unpolarised hydrogen target by a 27.6 GeV lepton beam are extracted from the HERMES data set of 2006-2007 using a missing-mass event selection tec
The target and double spin asymmetries of the exclusive pseudoscalar channel $vec evec pto eppi^0$ were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized pro
We report the measurement of beam-target double-spin asymmetries ($A_text{LT}$) in the inclusive production of identified hadrons, $vec{e}~$+$~^3text{He}^{uparrow}rightarrow h+X$, using a longitudinally polarized 5.9 GeV electron beam and a transvers