ﻻ يوجد ملخص باللغة العربية
Program equivalence in linear contexts, where programs are used or executed exactly once, is an important issue in programming languages. However, existing techniques like those based on bisimulations and logical relations only target at contextual equivalence in the usual (non-linear) functional languages, and fail in capturing non-trivial equivalent programs in linear contexts, particularly when non-determinism is present. We propose the notion of linear contextual equivalence to formally characterize such program equivalence, as well as a novel and general approach to studying it in higher-order languages, based on labeled transition systems specifically designed for functional languages. We show that linear contextual equivalence indeed coincides with trace equivalence - it is sound and complete. We illustrate our technique in both deterministic (a linear version of PCF) and non-deterministic (linear PCF in Moggis framework) functional languages.
This talk describes how a combination of symbolic computation techniques with first-order theorem proving can be used for solving some challenges of automating program analysis, in particular for generating and proving properties about the logically
This volume contains a final and revised selection of papers presented at the Seventh International Workshop on Verification and Program Transformation (VPT 2019), which took place in Genova, Italy, on April 2nd, 2019, affiliated with Programming 2019.
The theory of program modules is of interest to language designers not only for its practical importance to programming, but also because it lies at the nexus of three fundamental concerns in language design: the phase distinction, computational effe
A parameterized algebraic theory of instruction sequences, objects that represent the behaviours produced by instruction sequences under execution, and objects that represent the behaviours exhibited by the components of the execution environment of