ﻻ يوجد ملخص باللغة العربية
When both Hamiltonian operators of a bi-Hamiltonian system are pure differential operators, we show that the generalized Kupershmidt deformation (GKD) developed from the Kupershmidt deformation in cite{kd} offers an useful way to construct new integrable system starting from the bi-Hamiltonian system. We construct some new integrable systems by means of the generalized Kupershmidt deformation in the cases of Harry Dym hierarchy, classical Boussinesq hierarchy and coupled KdV hierarchy. We show that the GKD of Harry Dym equation, GKD of classical Boussinesq equation and GKD of coupled KdV equation are equivalent to the new integrable Rosochatius deformations of these soliton equations with self-consistent sources. We present the Lax Pair for these new systems. Therefore the generalized Kupershmidt deformation provides a new way to construct new integrable systems from bi-Hamiltonian systems and also offers a new approach to obtain the Rosochatius deformation of soliton equation with self-consistent sources.
Based on the Kupershmidt deformation for any integrable bi-Hamiltonian systems presented in [4], we propose the generalized Kupershmidt deformation to construct new systems from integrable bi-Hamiltonian systems, which provides a nonholonomic perturb
We introduce the notion of a real form of a Hamiltonian dynamical system in analogy with the notion of real forms for simple Lie algebras. This is done by restricting the complexified initial dynamical system to the fixed point set of a given involut
We show that the KdV6 equation recently studied in [1,2] is equivalent to the Rosochatius deformation of KdV equation with self-consistent sources (RD-KdVESCS) recently presented in [9]. The $t$-type bi-Hamiltonian formalism of KdV6 equation (RD-KdVE
We discuss the alternative algebraic structures on the manifold of quantum states arising from alternative Hermitian structures associated with quantum bi-Hamiltonian systems. We also consider the consequences at the level of the Heisenberg picture i
We investigate $n$-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in