ﻻ يوجد ملخص باللغة العربية
We present the late-time optical light curve of the ejecta of SN 1987A measured from HST imaging observations spanning the past 17 years. We find that the flux from the ejecta declined up to around year 2001, powered by the radioactive decay of 44Ti. Then the flux started to increase, more than doubling by the end of 2009. We show that the increase is the result of energy deposited by X-rays produced in the interaction with the circumstellar medium. We suggest that the change of the dominant energy input to the ejecta, from internal to external, marks the transition from supernova to supernova remnant. The details of the observations and the modelling are described in the accompanying supplementary information.
Extensive early observations proved that the ejecta of supernova 1987A (SN 1987A) are aspherical. Fifteen years after the supernova explosion, the Hubble Space Telescope has resolved the rapidly expanding ejecta. The late-time images and spectroscopy
We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 micron data and improved imaging quality at 100 and 160 micron compared to previous obse
We present a study of the morphology of the ejecta in Supernova 1987A based on images and spectra from the HST as well as integral field spectroscopy from VLT/SINFONI. The HST observations were obtained between 1994 - 2011 and primarily probe the out
Due to its proximity, SN 1987A offers a unique opportunity to directly observe the geometry of a stellar explosion as it unfolds. Here we present spectral and imaging observations of SN 1987A obtained ~10,000 days after the explosion with HST/STIS an
We report on the results from the analysis of our 114 ks Chandra HETGS observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the 3D structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler