ﻻ يوجد ملخص باللغة العربية
Numerical causal derivative estimators from noisy data are essential for real time applications especially for control applications or fluid simulation so as to address the new paradigms in solid modeling and video compression. By using an analytical point of view due to Lanczos cite{C. Lanczos} to this causal case, we revisit $n^{th}$ order derivative estimators originally introduced within an algebraic framework by Mboup, Fliess and Join in cite{num,num0}. Thanks to a given noise level $delta$ and a well-suitable integration length window, we show that the derivative estimator error can be $mathcal{O}(delta ^{frac{q+1}{n+1+q}})$ where $q$ is the order of truncation of the Jacobi polynomial series expansion used. This so obtained bound helps us to choose the values of our parameter estimators. We show the efficiency of our method on some examples.
In this paper, we investigate the statistical convergence rate of a Bayesian low-rank tensor estimator. Our problem setting is the regression problem where a tensor structure underlying the data is estimated. This problem setting occurs in many pract
The Gaver-Stehfest algorithm is widely used for numerical inversion of Laplace transform. In this paper we provide the first rigorous study of the rate of convergence of the Gaver-Stehfest algorithm. We prove that Gaver-Stehfest approximations conver
This article studies the problem of approximating functions belonging to a Hilbert space $H_d$ with an isotropic or anisotropic Gaussian reproducing kernel, $$ K_d(bx,bt) = expleft(-sum_{ell=1}^dgamma_ell^2(x_ell-t_ell)^2right) mbox{for all} bx,b
We propose a novel method to compute a finite difference stencil for Riesz derivative for artibitrary speed of convergence. This method is based on applying a pre-filter to the Grunwald-Letnikov type central difference stencil. The filter is obtained
In recent years, contour-based eigensolvers have emerged as a standard approach for the solution of large and sparse eigenvalue problems. Building upon recent performance improvements through non-linear least square optimization of so-called rational