ﻻ يوجد ملخص باللغة العربية
We study the storage of multiple phase-coded patterns as stable dynamical attractors in recurrent neural networks with sparse connectivity. To determine the synaptic strength of existent connections and store the phase-coded patterns, we introduce a learning rule inspired to the spike-timing dependent plasticity (STDP). We find that, after learning, the spontaneous dynamics of the network replay one of the stored dynamical patterns, depending on the network initialization. We study the network capacity as a function of topology, and find that a small- world-like topology may be optimal, as a compromise between the high wiring cost of long range connections and the capacity increase.
In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of the neural activity, as expected, but it can also promote neural reacti
We analyse the storage and retrieval capacity in a recurrent neural network of spiking integrate and fire neurons. In the model we distinguish between a learning mode, during which the synaptic connections change according to a Spike-Timing Dependent
We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at differentctime scales. Using an STDP-ba
We study a pulse-coupled dynamics of excitable elements in uncorrelated scale-free networks. Regimes of self-sustained activity are found for homogeneous and inhomogeneous couplings, in which the system displays a wide variety of behaviors, including
We consider a sparse random network of excitatory leaky integrate-and-fire neurons with short-term synaptic depression. Furthermore to mimic the dynamics of a brain circuit in its first stages of development we introduce for each neuron correlations