Superconducting quantum interference devices with submicron Nb/HfTi/Nb junctions for investigation of small magnetic particles


الملخص بالإنكليزية

We investigated, at temperature $4.2,mathrm{K}$, electric transport, flux noise and resulting spin sensitivity of miniaturized Nb direct current superconducting quantum interference devices (SQUIDs) based on submicron Josephson junctions with HfTi barriers. The SQUIDs are either of the magnetometer-type or gradiometric in layout. In the white noise regime, for the best magnetometer we obtain a flux noise $S_{Phi}^{1/2}=250,mathrm{n}Phi_0/mathrm{Hz}^{1/2}$, corresponding to a spin sensitivity $S^{1/2}_mu,ge,29,mu_B/mathrm{Hz}^{1/2}$. For the gradiometer we find $S_{Phi}^{1/2}=300,mathrm{n}Phi_0/mathrm{Hz}^{1/2}$ and $S^{1/2}_mu,ge,44,mu_B/mathrm{Hz}^{1/2}$. The devices can still be optimized with respect to flux noise and coupling between a magnetic particle and the SQUID, leaving room for further improvement towards single spin resolution.

تحميل البحث