ﻻ يوجد ملخص باللغة العربية
The thermally activated proton diffusion in BaZr0.9Y0.1O3-{delta} was studied with electrochemical impedance spectroscopy (IS) and quasi-elastic neutron scattering (QENS) in the temperature range from 300 K to 900 K. The diffusivities for the bulk material and the grain boundaries as obtained by IS obey an Arrhenius law with activation energies of 0.46 eV and 1.21 eV, respectively. The activation energies obtained by IS for the bulk are 0.26 eV above 700 K and 0.46 eV, below 700 K. The total diffusivity as obtained by IS is by one order of magnitude lower than the microscopic diffusivity as obtained by QENS. The activation energies obtained by QENS are 0.13 eV above 700 K and 0.04 eV, below 700 K. At about 700 K, the diffusion constants for IS and QENS have a remarkable crossover, suggesting two processes with different activation energies.
Yttrium substituted BaZrO3, with nominal composition BaZr0.9Y0.1O3, a ceramic proton conductor, was subject to impedance spectroscopy for temperatures 300 K < T < 715 K at mechanical pressures 1 GPa < p < 2 GPa. The activation energies Ea of bulk and
Exclusive measurements of the $pp to pppi^0pi^0$ reaction have been performed at CELSIUS/WASA at energies from threshold up to $T_p$ = 1.3 GeV. Total and differential cross sections have been obtained. Here we concentrate on energies $T_p ge$ 1 GeV,
Hard bremsstrahlung production in proton-proton collisions has been studied with the ANKE spectrometer at COSY-Juelich in the energy range of 353-800 MeV by detecting the final proton pair {pp}_s from the pp -> {pp}_s reaction with very low excitatio
In this work we have studied systematically the changes in the magnetic behavior of highly oriented pyrolytic graphite (HOPG) samples after proton irradiation in the MeV energy range. Superconducting quantum interferometer device (SQUID) results obta
We report on the investigation of $Delta$(1232) production and decay in proton-proton collisions at a kinetic energy of 1.25 GeV measured with HADES. Exclusive dilepton decay channels $ppe^{+}e^{-}$ and $ppe^{+}e^{-}gamma$ have been studied and compa