ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating variation of latitudinal stellar spot rotation and its relation to the real stellar surface rotation

158   0   0.0 ( 0 )
 نشر من قبل Heidi Korhonen
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H. Korhonen




اسأل ChatGPT حول البحث

In this work the latitude dependent stellar spot rotation is investigated based on dynamo models. The maps of the magnetic pressure at the surface from the dynamo calculations are treated similarly to the temperature maps obtained using Doppler imaging techniques. A series of snapshots from the dynamo models are cross-correlated to obtain the shift of the magnetic patterns at each latitude and time point. The surface differential rotation patterns obtained from the snapshots of the dynamo calculations show in all studied cases variability over the activity cycle. In the models using only the large scale dynamo field the measured rotation patterns are only at times similar to the input rotation law. This is due to the spot motion being mainly determined by the geometric properties of the large scale dynamo field. In the models with additional small scale magnetic field the surface differential rotation measured from the model follows well the input rotation law. The results imply that the stellar spots caused by the large scale dynamo field are not necessarily tracing the stellar differential rotation, whereas the spots formed from small scale fields trace well the surface flow patterns. It can be questioned whether the large spots observed in active stars could be caused by small scale fields. Therefore, it is not clear that the true stellar surface rotation can be recovered using measurements of large starspots, which are currently the only ones that can be observed.



قيم البحث

اقرأ أيضاً

113 - H. Korhonen 2011
Rapid rotation enhances the dynamo operating in stars, and thus also introducessignificantly stronger magnetic activity than is seen in slower rotators. Many young cool stars still have the rapid, primordial rotation rates induced by the interstellar molecular cloud from which they were formed. Also older stars in close binary systems are often rapid rotators. These types of stars can show strong magnetic activity and large starspots. In the case of large starspots which cause observable changes in the brightness of the star, and even in the shapes of the spectral line profiles, one can get information on the rotation of the star. At times even information on the spot rotation at different stellar latitudes can be obtained, similarly to the solar surface differential rotation measurements using magnetic features as tracers. Here, I will review investigations of stellar rotation based on starspots. I will discuss what we can obtain from ground-based photometry and how that improves with the uninterrupted, high precision, observations from space. The emphasis will be onhow starspots, and even stellar surface differential rotation, can be studied using high resolution spectra.
136 - Daniel R. Reese 2015
Massive and intermediate mass stars play a crucial role in astrophysics. Indeed, massive stars are the main producers of heavy elements, explode in supernovae at the end of their short lifetimes, and may be the progenitors of gamma ray bursts. Interm ediate mass stars, although not destined to explode in supernovae, display similar phenomena, are much more numerous, and have some of the richest pulsation spectra. A key to understanding these stars is understanding the effects of rapid rotation on their structure and evolution. These effects include centrifugal deformation and gravity darkening which can be observed immediately, and long terms effects such as rotational mixing due to shear turbulence, which prolong stellar lifetime, modify chemical yields, and impact the stellar remnant at the end of their lifetime. In order to understand these effects, a number of models have been and are being developed over the past few years. These models lead to increasingly sophisticated predictions which need to be tested through observations. A particularly promising source of constraints is seismic observations as these may potentially lead to detailed information on their internal structure. However, before extracting such information, a number of theoretical and observational hurdles need to be overcome, not least of which is mode identification. The present proceedings describe recent progress in modelling these stars and show how an improved understanding of their pulsations, namely frequency patterns, mode visibilities, line profile variations, and mode excitation, may help with deciphering seismic observations.
Observations of surface magnetic fields are now within reach for many stellar types thanks to the development of Zeeman-Doppler Imaging. These observations are extremely useful for constraining rotational evolution models of stars, as well as for cha racterizing the generation of magnetic field. We recently demonstrated that the impact of coronal magnetic field topology on the rotational braking of a star can be parametrized with a scalar parameter: the open magnetic flux. However, without running costly numerical simulations of the stellar wind, reconstructing the coronal structure of the large scale magnetic field is not trivial. An alternative -broadly used in solar physics- is to extrapolate the surface magnetic field assuming a potential field in the corona, to describe the opening of the field lines by the magnetized wind. This technique relies on the definition of a so-called source surface radius, which is often fixed to the canonical value of 2.5Rsun. However this value likely varies from star to star. To resolve this issue, we use our extended set of 2.5D wind simulations published in 2015, to provide a criteria for the opening of field lines as well as a simple tool to assess the source surface radius and the open magnetic flux. This allows us to derive the magnetic torque applied to the star by the wind from any spectropolarimetric observation. We conclude by discussing some estimations of spin-down time scales made using our technique, and compare them to observational requirements.
We measure rotation periods for 12151 stars in the Kepler field, based on the photometric variability caused by stellar activity. Our analysis returns stable rotation periods over at least six out of eight quarters of Kepler data. This large sample o f stars enables us to study the rotation periods as a function of spectral type. We find good agreement with previous studies and vsini measurements for F, G and K stars. Combining rotation periods, B-V color, and gyrochronology relations, we find that the cool stars in our sample are predominantly younger than ~1Gyr.
185 - P. J. Kapyla 2014
(abridged) Context: Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models and numerical simulations can result in a slower equator and faster poles when the rotation is slow. Aim s: We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator, fast poles). We estimate the non-diffusive ($Lambda$ effect) and diffusive (turbulent viscosity) contributions to the Reynolds stress. Methods: We present the results of three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geometry. Here we apply a fully compressible setup which would suffer from a prohibitive time step constraint if the real solar luminosity was used. We regulate the convective velocities by varying the amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection. Results: Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp transition from solar-like to anti-solar differential rotation for Coriolis numbers around 1.3. We confirm the recent finding of a large-scale flow bistability: contrasted with running the models from an initial condition with unprescribed differential rotation, the initialization of the model with certain kind of rotation profile sustains the solution over a wider parameter range. Conclusions: Our results may have implications for real stars that start their lives as rapid rotators implying solar-like rotation in the early main-sequence evolution. As they slow down, they might be able to retain solar-like rotation for lower Coriolis numbers before switching to anti-solar rotation. This could partially explain the puzzling findings of anti-solar rotation profiles for models in the solar parameter regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا