ﻻ يوجد ملخص باللغة العربية
Anisotropy effects can significantly control or modify the ground-state properties of magnetic systems. Yet the origin and the relative importance of the possible anisotropy terms is difficult to assess experimentally and often ambiguous. Here we propose a technique which allows a very direct distinction between single-ion and two-ion anisotropy effects. The method is based on high-resolution neutron spectroscopic investigations of magnetic cluster excitations. This is exemplified for manganese dimers and tetramers in the mixed compounds CsMnxMg1-xBr3 (0.05leqxleq0.40). Our experiments provide evidence for a pronounced anisotropy of the order of 3% of the dominant bilinear exchange interaction, and the anisotropy is dominated by the single-ion term. The detailed characterization of magnetic cluster excitations offers a convenient way to unravel anisotropy effects in any magnetic material.
Terbium gallium garnet (TGG), Tb$_3$Ga$_5$O$_{12}$, is well known for its applications in laser optics, but also exhibits complex low-temperature magnetism that is not yet fully understood. Its low-temperature magnetic order is determined by means of
We present a comprehensive study of magnon excitations in the tetragonal easy-plane anti-ferromagnet Bi$_2$CuO$_4$ using inelastic neutron scattering and spin wave analyses. The nature of low energy magnons, and hence the anisotropy in this material,
Quasi-one-dimensional magnet NiCl$_2cdot$4SC(NH$_2$)$_2$, usually abbreviated as DTN, does not order at zero field down to $T=0$: due to the strong single-ion anisotropy of the easy plane type acting on $S=1$ Ni$^{2+}$ ions, the $S_z=0$ ground state
By LDA+U method with spin-orbit coupling (LDA+U+SO) the magnetic state and electronic structure have been investigated for plutonium in delta and alpha phases and for Pu compounds: PuN, PuCoGa5, PuRh2, PuSi2, PuTe, and PuSb. For metallic plutonium in
Single-ion lanthanide-organic complexes can provide stable magnetic moments with well-defined orientation for spintronic applications on the atomic level. Here, we show by a combined experimental approach of scanning tunneling microscopy and X-ray ab