ﻻ يوجد ملخص باللغة العربية
We explore SNe Ia as p-process sites in the framework of two-dimensional SN Ia delayed detonation and pure deflagration models. The WD precursor is assumed to have reached the Chandrasekhar mass in a binary system by mass accretion from a giant/main sequence companion. We use enhanced s-seed distributions, obtained from a sequence of thermal pulse instabilities both in the AGB phase and in the accreted material. We apply the tracer-particle method to reconstruct the nucleosynthesis by the thermal histories of Lagrangian particles, passively advected in the hydrodynamic calculations. For each particle we follow the explosive nucleosynthesis with a detailed network for all isotopes up to 209Bi. We find that SNe Ia can produce a large amount of p-nuclei, both the light p-nuclei below A=120 and the heavy-p nuclei, at quite flat average production factors, tightly related to the s-process seed distribution. For the first time, we find a stellar source able to produce both, light and heavy p-nuclei almost at the same level as 56Fe, including the very debated neutron magic 92,94Mo and 96,98Ru. We also find that there is an important contribution from p-process nucleosynthesis to the s-only nuclei 80Kr, 86Sr, to the neutron magic 90Zr, and to the neutron-rich 96Zr. Finally, we investigate the metallicity effect on p-process. Starting with different s-process seed distributions, for two metallicities Z = 0.02 and Z = 0.001, running SNe Ia models with different initial composition, we estimate that SNe Ia can contribute to, at least, 50% of the solar p-process composition.
We present results for a suite of fourteen three-dimensional, high resolution hydrodynamical simulations of delayed-detonation modelsof Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN Ia simulati
We investigate whether pure deflagration models of Chandrasekhar-mass carbon-oxygen white dwarf stars can account for one or more subclass of the observed population of Type Ia supernova (SN Ia) explosions. We compute a set of 3D full-star hydrodynam
Among the major uncertainties involved in the Chandrasekhar mass models for Type Ia supernovae are the companion star of the accreting white dwarf (or the accretion rate that determines the carbon ignition density) and the flame speed after ignition.
We present our first nucleosynthesis results from a numerical simulation of the thermonuclear disruption of a static cold Chandrasekhar-mass C/O white dwarf. The two-dimensional simulation was performed with an adaptive-mesh Eulerian hydrodynamics co
Various nucleosynthesis studies have pointed out that the r-process elements in very metal-poor (VMP) halo stars might have different origins. By means of familiar concepts from statistics (correlations, cluster analysis, rank tests of elemental abun