ﻻ يوجد ملخص باللغة العربية
We study the effect of laser phase noise on the generation of stationary entanglement between an intracavity optical mode and a mechanical resonator in a generic cavity optomechanical system. We show that one can realize robust stationary optomechanical entanglement even in the presence of non-negligible laser phase noise. We also show that the explicit form of the laser phase noise spectrum is relevant, and discuss its effect on both optomechanical entanglement and ground state cooling of the mechanical resonator.
We investigate a general scheme for generating, either dynamically or in the steady state, continuous variable entanglement between two mechanical resonators with different frequencies. We employ an optomechanical system in which a single optical cav
Cavity optomechanical systems are approaching a strong-coupling regime where the coherent dynamics of nanomechanical resonators can be manipulated and controlled by optical fields at the single photon level. Here we propose an interferometric scheme
We study the cavity mode frequencies of a Fabry-Perot cavity containing two vibrating dielectric membranes. We derive the equations for the mode resonances and provide approximate analytical solutions for them as a function of the membrane positions,
Cavity-enhanced radiation pressure coupling between optical and mechanical degrees of freedom allows quantum-limited position measurements and gives rise to dynamical backaction enabling amplification and cooling of mechanical motion. Here we demonst
Single-crystal diamond cavity optomechanical devices are a promising example of a hybrid quantum system: by coupling mechanical resonances to both light and electron spins, they can enable new ways for photons to control solid state qubits. However,