ﻻ يوجد ملخص باللغة العربية
Stars form in dense cores of magnetized molecular clouds. If the magnetic flux threading the cores is dragged into the stars, the stellar field would be orders of magnitude stronger than observed. This well-known magnetic flux problem demands that most of the core magnetic flux be decoupled from the matter that enters the star. We carry out the first exploration of what happens to the decoupled magnetic flux in 3D, using an MHD version of the ENZO adaptive mesh refinement code. The field-matter decoupling is achieved through a sink particle treatment, which is needed to follow the protostellar accretion phase of star formation. We find that the accumulation of the decoupled flux near the accreting protostar leads to a magnetic pressure buildup. The high pressure is released anisotropically, along the path of least resistance. It drives a low-density expanding region in which the decoupled magnetic flux is expelled. This decoupling-enabled magnetic structure has never been seen before in 3D MHD simulations of star formation. It generates a strong asymmetry in the protostellar accretion flow, potentially giving a kick to the star. In the presence of an initial core rotation, the structure presents an obstacle to the formation of a rotationally supported disk, in addition to magnetic braking, by acting as a rigid magnetic wall that prevents the rotating gas from completing a full orbit around the central object. We conclude that the decoupled magnetic flux from the stellar matter can strongly affect the protostellar collapse dynamics.
The study of long-term evolution of neutron star (NS) magnetic fields is key to understanding the rich diversity of NS observations, and to unifying their nature despite the different emission mechanisms and observed properties. Such studies in princ
As one of the main formation mechanisms of solar filament formation, the chromospheric evaporation-coronal condensation model has been confirmed by numerical simulations to explain the formation of filament threads very well in flux tubes with single
Even when cooled through its transition temperature in the presence of an external magnetic field, a superconductor can expel nearly all external magnetic flux. This Letter presents an experimental study to identify the parameters that most strongly
We investigate the rising flux tube and the formation of sunspots in an unprecedentedly deep computational domain that covers the whole convection zone with a radiative magnetohydrodynamics simulation. Previous calculations had shallow computational
When a superconducting radiofrequency cavity is cooled through its critical temperature, ambient magnetic flux can become frozen in to the superconductor, resulting in degradation of the quality factor. This is especially problematic in applications