ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonances in a dilute gas of magnons and metamagnetism of isotropic frustrated ferromagnetic spin chains

121   0   0.0 ( 0 )
 نشر من قبل Fabian Heidrich-Meisner
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that spin-S chains with SU(2)-symmetric, ferromagnetic nearest-neighbor and frustrating antiferromagnetic next-nearest-neighbor exchange interactions exhibit metamagnetic behavior under the influence of an external magnetic field for small S, in the form of a first-order transition to the fully polarized state. The corresponding magnetization jump increases gradually starting from an S-dependent critical value of exchange couplings and takes a maximum in the vicinity of a ferromagnetic Lifshitz point. The metamagnetism results from resonances in the dilute magnon gas caused by an interplay between quantum fluctuations and frustration.



قيم البحث

اقرأ أيضاً

We study the ground state of frustrated spin-S chains in a strong magnetic field in the immediate vicinity of saturation. In strongly frustrated chains, the magnon dispersion has two degenerate minima at inequivalent momenta $pm Q$, and just below th e saturation field the system can be effectively represented as a dilute one-dimensional lattice gas of two species of bosons that correspond to magnons with momenta around $pm Q$. We present a theory of effective interactions in such a dilute magnon gas that allows us to make quantitative predictions for arbitrary values of the spin. With the help of this method, we are able to establish the magnetic phase diagram of frustrated chains close to saturation and study phase transitions between several nontrivial states, including a two-component Luttinger liquid, a vector chiral phase, and phases with bound magnons. We study those phase transitions numerically and find a good agreement with our analytical predictions.
We study the frustrated ferromagnetic spin-1 chains, where the ferromagnetic nearest-neighbor coupling competes with the antiferromagnetic next-nearest-neighbor coupling. We use the density matrix renormalization group to obtain the ground states. Th rough the analysis of spin-spin correlations we identify the double Haldane phase as well as the ferromagnetic phase. It is shown that the ferromagnetic coupling leads to incommensurate correlations in the double Haldane phase. Such short-range correlations transform continuously into the ferromagnetic instability at the transition to the ferromagnetic phase. We also compare the results with the spin-1/2 and classical spin systems, and discuss the string orders in the system.
Frustrated spin systems can show phases with spontaneous breaking of spin-rotational symmetry without the formation of local magnetic order. We study the dynamic response of the spin-nematic phase of one-dimensional spin-1/2 systems, characterized by slow large-distance decay of quadrupolar correlations, by numerically computing one-spin and two-spin dynamical structure factors at zero temperature using time-dependent density matrix renormalization group methods. We interpret the results in terms of an effective theory of gapped magnon excitations interacting with a quasi-condensate of bound magnon pairs. This employs an extension of the well-known Tomonaga-Luttinger liquid theory which includes the magnon states as a mobile impurity. A good qualitative understanding of the characteristic thresholds and their intensity in the structure factors is obtained this way. Our results are useful in the interpretation of inelastic neutron scattering and resonant inelastic x-ray scattering experiments.
65 - H. Zhang , Z. Zhao , D. Gautreau 2020
In conventional quasi-one-dimensional antiferromagnets with quantum spins, magnetic excitations are carried by either magnons or spinons in different energy regimes: they do not coexist independently, nor could they interact with each other. In this Letter, by combining inelastic neutron scattering, quantum Monte Carlo simulations and Random Phase Approximation calculations, we report the discovery and discuss the physics of the coexistence of magnons and spinons and their interactions in Botallackite-Cu2(OH)3Br. This is a unique quantum antiferromagnet consisting of alternating ferromagnetic and antiferromagnetic Spin-1/2 chains with weak inter-chain couplings. Our study presents a new paradigm where one can study the interaction between two different types of magnetic quasiparticles, magnons and spinons.
We study states with spontaneous spin current, emerging in frustrated antiferromagnetic spin-$S$ chains subject to a strong external magnetic field. As a numerical tool, we use a non-Abelian symmetry realization of the density matrix renormalization group. The field dependence of the order parameter and the critical exponents are presented for zigzag chains with S=1/2, 1, 3/2, and 2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا