ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of a New Triple-alpha Reaction on X-ray Bursts of a Helium Accreting Neutron Star

89   0   0.0 ( 0 )
 نشر من قبل Yasuhide Matsuo
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effects of a new triple-$alpha$ reaction rate (OKK rate) on the helium flash of a helium accreting neutron star in a binary system have been investigated. Since the ignition points determine the properties of a thermonuclear flash of type I X-ray bursts, we examine the cases of different accretion rates, $dM/dt (dot{M})$, of helium from $3times10^{-10} M_{odot} rm yr^{-1}$ to $3times10^{-8} M_{odot} rm yr^{-1}$, which could cover the observed accretion rates. We find that for the cases of low accretion rates, nuclear burnings are ignited at the helium layers of rather low densities. As a consequence, helium deflagration would be triggered for all cases of lower accretion rate than $dot{M}simeq 3times10^{-8} M_{odot} rm yr^{-1}$. We find that OKK rate could be barely consistent with the available observations of the X-ray bursts on the helium accreting neutron star. However this coincidence is found to depend on the properties of crustal heating and the neutron star model.We suggest that OKK rate would be reduced by a factor of $10^{2-3}$ for $10^8$ K in the range of the observational errors.



قيم البحث

اقرأ أيضاً

The ultracompact low-mass X-ray binary 4U 1820-30 situated in the globular cluster NGC 6624 has an orbital period of only $approx$11.4 min which likely implies a white dwarf companion. The observed X-ray bursts demonstrate a photospheric radius expan sion phase and therefore are believed to reach the Eddington luminosity allowing us to estimate the mass and the radius of the neutron star (NS) in this binary. Here we re-analyse all Rossi X-ray Timing Explorer observations of the system and confirm that almost all the bursts took place during the hard persistent state of the system. This allows us to use the recently developed direct cooling tail method to estimate the NS mass and radius. However, because of the very short, about a second, duration of the cooling tail phases that can be described by the theoretical atmosphere models, the obtained constraints on the NS radius are not very strict. Assuming a pure helium NS atmosphere we found that the NS radius is in the range 10-12 km, if the NS mass is below 1.7 $M_odot$, and in a wider range of 8-12 km for a higher 1.7-2.0 $M_odot$ NS mass. The method also constrains the distance to the system to be 6.5$pm$0.5 kpc, which is consistent with the distance to the cluster. For the solar composition atmosphere, the NS parameters are in strong contradiction with the generally accepted range of possible NS masses and radii.
57 - S.A. Grebenev 2017
We report the detection during the JEM-X/INTEGRAL observations of several X-ray bursters of series of close type I X-ray bursts consisting of two or three events with a recurrence time much shorter than the characteristic (at the observed mean accret ion rate) time of matter accumulation needed for a thermonuclear explosion to be initiated on the neutron star surface. We show that such series of bursts are naturally explained in the model of a spreading layer of accreting matter over the neutron star surface in the case of a sufficiently high ($dot{M}geq 1times 10^{-9} M_{odot} mbox{yr}^{-1}$) accretion rate (corresponding to a mean luminosity $L_{rm tot}geq 1times 10^{37} mbox{erg s}^{-1}$). The existence of triple bursts requires some refinement of the model - the importance of a central ring zone is shown. In the standard model of a spreading layer no infall of matter in this zone is believed to occur.
We report new radio observations of a sample of thirty-six neutron star (NS) X-ray binaries, more than doubling the sample in the literature observed at current-day sensitivities. These sources include thirteen weakly-magnetised ($B<10^{10}$ G) and t wenty-three strongly-magnetised ($Bgeq10^{10}$ G) NSs. Sixteen of the latter category reside in high-mass X-ray binaries, of which only two systems were radio-detected previously. We detect four weakly and nine strongly-magnetised NSs; the latter are systematically radio fainter than the former and do not exceed $L_R approx 3times10^{28}$ erg/s. In turn, we confirm the earlier finding that the weakly-magnetized NSs are typically radio fainter than accreting stellar-mass black holes. While an unambiguous identification of the origin of radio emission in high-mass X-ray binaries is challenging, we find that in all but two detected sources (Vela X-1 and 4U 1700-37) the radio emission appears more likely attributable to a jet than the donor star wind. The strongly-magnetised NS sample does not reveal a global correlation between X-ray and radio luminosity, which may be a result of sensitivity limits. Furthermore, we discuss the effect of NS spin and magnetic field on radio luminosity and jet power in our sample. No current model can account for all observed properties, necessitating the development and refinement of NS jet models to include magnetic field strengths up to $10^{13}$ G. Finally, we discuss jet quenching in soft states of NS low-mass X-ray binaries, the radio non-detections of all observed very-faint X-ray binaries in our sample, and future radio campaigns of accreting NSs.
136 - M. Bachetti 2014
Ultraluminous X-ray sources (ULX) are off-nuclear point sources in nearby galaxies whose X-ray luminosity exceeds the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their luminosity ranges from $10^{40}$ erg s$^{-1} < L_X$(0.5 - 10 keV) $<10^{40}$ erg s$^{-1}$. Since higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end ($L_X$ > $10^{40}$ erg s$^{-1}$), which require black hole masses MBH >50 solar masses and/or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries. Here we report broadband X-ray observations of the nuclear region of the galaxy M82, which contains two bright ULXs. The observations reveal pulsations of average period 1.37 s with a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to $L_X$(3 - 30 keV) = $4.9 times 10^{39}$ erg s$^{-1}$. The pulsating source is spatially coincident with a variable ULX which can reach $L_X$ (0.3 - 10 keV) = $1.8 times 10^{40}$ erg s$^{-1}$. This association implies a luminosity ~100 times the Eddington limit for a 1.4 solar mass object, or more than ten times brighter than any known accreting pulsar. This finding implies that neutron stars may not be rare in the ULX population, and it challenges physical models for the accretion of matter onto magnetized compact objects.
We report on the detection and follow-up multi-wavelength observations of the new X-ray transient MAXI J1807+132 with the MAXI/GSC, Swift, and ground-based optical telescopes. The source was first recognized with the MAXI/GSC on 2017 March 13. About a week later, it reached the maximum intensity ($sim$10 mCrab in 2-10 keV), and then gradually faded in $sim$10 days by more than one order of magnitude. Time-averaged Swift/XRT spectra in the decaying phase can be described by a blackbody with a relatively low temperature (0.1-0.5 keV), plus a hard power-law component with a photon index of $sim$2. These spectral properties are similar to those of neutron star low-mass X-ray binaries (LMXBs) in their dim periods. The blackbody temperature and the radius of the emission region varied in a complex manner as the source became dimmer. The source was detected in the optical wavelength on March 27-31 as well. The optical flux decreased monotonically as the X-ray flux decayed. The correlation between the X-ray and optical fluxes is found to be consistent with those of known neutron star LMXBs, supporting the idea that the source is likely to be a transient neutron star LMXB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا