ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron dynamics in topological insulator based semiconductor-metal interfaces (topological p-n interface based on Bi2Se3 class)

143   0   0.0 ( 0 )
 نشر من قبل M Zahid Hasan
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single-Dirac-cone topological insulators (TI) are the first experimentally discovered class of three dimensional topologically ordered electronic systems, and feature robust, massless spin-helical conducting surface states that appear at any interface between a topological insulator and normal matter that lacks the topological insulator ordering. This topologically defined surface environment has been theoretically identified as a promising platform for observing a wide range of new physical phenomena, and possesses ideal properties for advanced electronics such as spin-polarized conductivity and suppressed scattering. A key missing step in enabling these applications is to understand how topologically ordered electrons respond to the interfaces and surface structures that constitute a device. Here we explore this question by using the surface deposition of cathode (Cu/In/Fe) and anode materials (NO$_2$) and control of bulk doping in Bi$_2$Se$_3$ from P-type to N-type charge transport regimes to generate a range of topological insulator interface scenarios that are fundamental to device development. The interplay of conventional semiconductor junction physics and three dimensional topological electronic order is observed to generate novel junction behaviors that go beyond the doped-insulator paradigm of conventional semiconductor devices and greatly alter the known spin-orbit interface phenomenon of Rashba splitting. Our measurements for the first time reveal new classes of diode-like configurations that can create a gap in the interface electron density near a topological Dirac point and systematically modify the topological surface state Dirac velocity, allowing far reaching control of spin-textured helical Dirac electrons inside the interface and creating advantages for TI superconductors as a Majorana fermion platform over spin-orbit semiconductors.



قيم البحث

اقرأ أيضاً

Topological insulators embody a new state of matter characterized entirely by the topological invariants of the bulk electronic structure rather than any form of spontaneously broken symmetry. Unlike the 2D quantum Hall or quantum spin-Hall-like syst ems, the three dimensional (3D) topological insulators can host magnetism and superconductivity which has generated widespread research activity in condensed-matter and materials-physics communities. Thus there is an explosion of interest in understanding the rich interplay between topological and the broken-symmetry states (such as superconductivity), greatly spurred by proposals that superconductivity introduced into certain band structures will host exotic quasiparticles which are of interest in quantum information science. The observations of superconductivity in doped Bi_2Se_3 (Cu$_x$Bi$_2$Se$_3$) and doped Bi_2Te_3 (Pd$_x$-Bi$_2$Te$_3$ T$_c$ $sim$ 5K) have raised many intriguing questions about the spin-orbit physics of these ternary complexes while any rigorous theory of superconductivity remains elusive. Here we present key measurements of electron dynamics in systematically tunable normal state of Cu$_x$Bi$_2$Se$_3$ (x=0 to 12%) gaining insights into its spin-orbit behavior and the topological nature of the surface where superconductivity takes place at low temperatures. Our data reveal that superconductivity occurs (in sample compositions) with electrons in a bulk relativistic kinematic regime and we identify that an unconventional doping mechanism causes the topological surface character of the undoped compound to be preserved at the Fermi level of the superconducting compound, where Cooper pairing occurs at low temperatures. These experimental observations provide important clues for developing a theory of topological-superconductivity in 3D topological insulators.
We analyze the evidence of Majorana zero modes in nanowires that came from tunneling spectroscopy and other experiments, and scout the path to topologically protected states that are of interest for quantum computing. We illustrate the importance of the superconductor-semiconductor interface quality and sketch out where further progress in materials science of these interfaces can take us. Finally, we discuss the prospects of observing more exotic non-Abelian anyons based on the same materials platform, and how to make connections to high energy physics.
Recent experiments demonstrating large spin-transfer torques in topological insulator (TI)-ferromagnetic metal (FM) bilayers have generated a great deal of excitement due to their potential applications in spintronics. The source of the observed spin -transfer torque, however, remains unclear. This is because the large charge transfer from the FM to TI layer would prevent the Dirac cone at the interface from being anywhere near the Fermi level to contribute to the observed spin-transfer torque. Moreover, there is yet little understanding of the impact on the Dirac cone at the interface from the metallic bands overlapping in energy and momentum, where strong hybridization could take place. Here, we build a simple microscopic model and perform first-principles-based simulations for such a TI-FM heterostructure, considering the strong hybridization and charge transfer effects. We find that the original Dirac cone is destroyed by the hybridization as expected. Instead, we find a new interface state which we dub descendent state to form near the Fermi level due to the strong hybridization with the FM states at the same momentum. Such a `descendent state carries a sizable weight of the original Dirac interface state, and thus inherits the localization at the interface and the same Rashba-type spin-momentum locking. We propose that the `descendent state may be an important source of the experimentally observed large spin-transfer torque in the TI-FM heterostructure.
The surface of a 3D topological insulator is conducting and the topologically nontrivial nature of the surface states is observed in experiments. It is the aim of this paper to review and analyze experimental observations with respect to the magnetot ransport in Bi-based 3D topological insulators, as well as the superconducting transport properties of hybrid structures consisting of superconductors and these topological insulators. The helical spin-momentum coupling of the surface state electrons becomes visible in quantum corrections to the conductivity and magnetoresistance oscillations. An analysis will be provided of the reported magnetoresistance, also in the presence of bulk conductivity shunts. Special attention is given to the large and linear magnetoresistance. Superconductivity can be induced in topological superconductors by means of the proximity effect. The induced supercurrents, Josephson effects and current-phase relations will be reviewed. These materials hold great potential in the field of spintronics and the route towards Majorana devices.
A p-n junction, an interface between two regions of a material populated with carriers of opposite charge, is a basic building block of solid state electronic devices. From the fundamental physics perspective, it often serves as a tool to reveal the unconventional transport behavior of novel materials. In this work, we show that a p-n junction made from a three dimensional topological insulator (3DTI) in a magnetic field realizes an electronic Mach-Zehnder interferometer with virtually perfect visibility. This is owed to the confinement of the topological Dirac fermion state to a closed two-dimensional surface, which offers the unprecedented possibility of utilizing external fields to design networks of chiral modes wrapping around the bulk in closed trajectories, without the need of complex constrictions or etching. Remarkably, this junction also acts as a spin filter, where the path of the particle is tied to the direction of spin propagation. It therefore constitutes a novel and highly tunable spintronic device where spin polarized input and output currents are naturally formed and could be accessed and manipulated seperately.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا