ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Finiteness Problem for Automaton (Semi)groups

225   0   0.0 ( 0 )
 نشر من قبل Ines Klimann
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper addresses a decision problem highlighted by Grigorchuk, Nekrashevich, and Sushchanskii, namely the finiteness problem for automaton (semi)groups. For semigroups, we give an effective sufficient but not necessary condition for finiteness and, for groups, an effective necessary but not sufficient condition. The efficiency of the new criteria is demonstrated by testing all Mealy automata with small stateset and alphabet. Finally, for groups, we provide a necessary and sufficient condition that does not directly lead to a decision procedure.



قيم البحث

اقرأ أيضاً

268 - Pierre Gillibert 2013
The finiteness problem for automaton groups and semigroups has been widely studied, several partial positive results are known. However we prove that, in the most general case, the problem is undecidable. We study the case of automaton semigroups. Gi ven a NW-deterministic Wang tile set, we construct an Mealy automaton, such that the plane admit a valid Wang tiling if and only if the Mealy automaton generates a finite semigroup. The construction is similar to a construction by Kari for proving that the nilpotency problem for cellular automata is unsolvable. Moreover Kari proves that the tiling of the plane is undecidable for NW-deterministic Wang tile set. It follows that the finiteness problem for automaton semigroup is undecidable.
We consider a two-sided Pompeiu type problem for a discrete group $G$. We give necessary and sufficient conditions for a finite set $K$ of $G$ to have the $mathcal{F}(G)$-Pompeiu property. Using group von Neumann algebra techniques, we give necessary and sufficient conditions for $G$ to be a $ell^2(G)$-Pompeiu group
124 - Ines Klimann 2013
Antonenko and Russyev independently have shown that any Mealy automaton with no cycles with exit--that is, where every cycle in the underlying directed graph is a sink component--generates a fi- nite (semi)group, regardless of the choice of the produ ction functions. Antonenko has proved that this constitutes a characterization in the non-invertible case and asked for the invertible case, which is proved in this paper.
The simplest example of an infinite Burnside group arises in the class of automaton groups. However there is no known example of such a group generated by a reversible Mealy automaton. It has been proved that, for a connected automaton of size at mos t~3, or when the automaton is not bireversible, the generated group cannot be Burnside infinite. In this paper, we extend these results to automata with bigger stateset, proving that, if a connected reversible automaton has a prime number of states, it cannot generate an infinite Burnside group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا