ﻻ يوجد ملخص باللغة العربية
Organic electronics is a rapidly developing technology. Typically, the molecules involved in organic electronics are made up of hundreds of atoms, prohibiting a theoretical description by wavefunction-based ab-initio methods. Density-functional and Greens function type of methods scale less steeply with the number of atoms. Therefore, they provide a suitable framework for the theory of such large systems. In this contribution, we describe an implementation, for molecules, of Hedins GW approximation. The latter is the lowest order solution of a set of coupled integral equations for electronic Greens and vertex functions that was found by Lars Hedin half a century ago. Our implementation of Hedins GW approximation has two distinctive features: i) it uses sets of localized functions to describe the spatial dependence of correlation functions, and ii) it uses spectral functions to treat their frequency dependence. Using these features, we were able to achieve a favorable computational complexity of this approximation. In our implementation, the number of operations grows as N^3 with the number of atoms N.
A new implementation of the GW approximation (GWA) based on the all-electron Projector-Augmented-Wave method (PAW) is presented, where the screened Coulomb interaction is computed within the Random Phase Approximation (RPA) instead of the plasmon-pol
We have implemented the so called GW approximation (GWA) based on an all-electron full-potential Projector Augmented Wave (PAW) method. For the screening of the Coulomb interaction W we tested three different plasmon-pole dielectric function models,
We present quasiparticle (QP) energies from fully self-consistent $GW$ (sc$GW$) calculations for a set of prototypical semiconductors and insulators within the framework of the projector-augmented wave methodology. To obtain converged results, both f
In the Survivable Network Design problem (SNDP), we are given an undirected graph $G(V,E)$ with costs on edges, along with a connectivity requirement $r(u,v)$ for each pair $u,v$ of vertices. The goal is to find a minimum-cost subset $E^*$ of edges,
The $GW$ approximation is based on the neglect of vertex corrections, which appear in the exact self-energy and the exact polarizability. Here, we investigate the importance of vertex corrections in the polarizability only. We calculate the polarizab