ﻻ يوجد ملخص باللغة العربية
Multimode Gaussian quantum light, which includes multimode squeezed and multipartite quadrature entangled light, is a very general and powerful quantum resource with promising applications in quantum information processing and metrology. In this paper, we determine the ultimate sensitivity in the estimation of any parameter when the information about this parameter is encoded in such light, irrespective of the information extraction protocol used in the estimation and of the measured observable. In addition we show that an appropriate homodyne detection scheme allows us to reach this ultimate sensitivity. We show that, for a given set of available quantum resources, the most economical way to maximize the sensitivity is to put the most squeezed state available in a well-de ned light mode. This implies that it is not possible to take advantage of the existence of squeezed fluctuations in other modes, nor of quantum correlations and entanglement between diff erent modes.
We address the estimation of the loss parameter of a bosonic channel probed by arbitrary signals. Unlike the optimal Gaussian probes, which can attain the ultimate bound on precision asymptotically either for very small or very large losses, we prove
The ultimate precision limit in estimating the Larmor frequency of $N$ unentangled rotating spins is well established, and is highly important for magnetometers, gyroscopes and many other sensors. However this limit assumes perfect, single addressing
Quantum noise sets a fundamental limit to the sensitivity of high-precision measurements. Suppressing it can be achieved by using non-classical states and quantum filters, which modify both the noise and signal response. We find a novel approach to r
The measurement of circular dichroism (CD) has widely been exploited to distinguish the different enantiomers of chiral structures. It has been applied to natural materials (e.g. molecules) as well as to artificial materials (e.g. nanophotonic struct
Non-local point-to-point correlations between two photons have been used to produce ghost images without placing the camera towards the object. Here we theoretically demonstrated and analyzed the advantage of non-Gaussian quantum light in improving t