We study the game of go from a complex network perspective. We construct a directed network using a suitable definition of tactical moves including local patterns, and study this network for different datasets of professional tournaments and amateur games. The move distribution follows Zipfs law and the network is scale free, with statistical peculiarities different from other real directed networks, such as e. g. the World Wide Web. These specificities reflect in the outcome of ranking algorithms applied to it. The fine study of the eigenvalues and eigenvectors of matrices used by the ranking algorithms singles out certain strategic situations. Our results should pave the way to a better modelization of board games and other types of human strategic scheming.