ترغب بنشر مسار تعليمي؟ اضغط هنا

Doping-induced vertical line nodes in the superconducting gap of the iron arsenide K-Ba122 from directional thermal conductivity

149   0   0.0 ( 0 )
 نشر من قبل Jean-Philippe Reid
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The thermal conductivity k of the iron-arsenide superconductor K-Ba122 was measured down to 50 mK in a magnetic field up to 15 T, for a heat current parallel and perpendicular to the tetragonal c axis. In the range from optimal doping (x ~ 0.4) down to x = 0.16, there is no residual linear term in k(T) at T = 0, showing that there are no nodes in the superconducting gap anywhere on the Fermi surface. Upon crossing below x = 0.16, a large residual linear term suddenly appears, signaling the onset of nodes in the superconducting gap, most likely vertical line nodes running along the c axis. We discuss two scenarios: 1) accidental nodes in an s-wave gap, resulting from a strong modulation of the gap around the Fermi surface, in which minima deepen rapidly with underdoping; 2) a phase transition from a nodeless s-wave state to a d-wave state, in which nodes are imposed by symmetry.



قيم البحث

اقرأ أيضاً

The thermal conductivity kappa of the iron-arsenide superconductor Ba1-xKxFe2As2 was measured for heat currents parallel and perpendicular to the tetragonal c axis at temperatures down to 50 mK and in magnetic fields up to 15 T. Measurements were per formed on samples with compositions ranging from optimal doping (x = 0.34; Tc = 39 K) down to dopings deep into the region where antiferromagnetic order coexists with superconductivity (x = 0.16; Tc = 7 K). In zero field, there is no residual linear term in kappa(T) as T goes to 0 at any doping, whether for in-plane or inter-plane transport. This shows that there are no nodes in the superconducting gap. However, as x decreases into the range of coexistence with antiferromagnetism, the residual linear term grows more and more rapidly with applied magnetic field. This shows that the superconducting energy gap develops minima at certain locations on the Fermi surface and these minima deepen with decreasing x. We propose that the minima in the gap structure arise when the Fermi surface of Ba1-xKxFe2As2 is reconstructed by the antiferromagnetic order.
The electrical resistivity rho of the iron-arsenide superconductor Ba1-xKxFe2As2 was measured in applied pressures up to 2.6 GPa for four underdoped samples, with x = 0.16, 0.18, 0.19 and 0.21. The antiferromagnetic ordering temperature T_N, detected as a sharp anomaly in rho(T), decreases linearly with pressure. At pressures above around 1.0 GPa, a second sharp anomaly is detected at a lower temperature T_0, which rises with pressure. We attribute this second anomaly to the onset of a phase that causes a reconstruction of the Fermi surface. This new phase expands with increasing x and it competes with superconductivity. We discuss the possibility that a second spin-density wave orders at T_0, with a Q vector distinct from that of the spin-density wave that sets in at T_N.
There is strong experimental evidence that the superconductor Sr2RuO4 has a chiral p-wave order parameter. This symmetry does not require that the associated gap has nodes, yet specific heat, ultrasound and thermal conductivity measurements indicate the presence of nodes in the superconducting gap structure of Sr2RuO4. Theoretical scenarios have been proposed to account for the existence of accidental nodes or deep accidental minima within a p-wave state. To elucidate the nodal structure of the gap, it is essential to know whether the lines of nodes (or minima) are vertical (parallel to the tetragonal c axis) or horizontal (perpendicular to the c axis). Here, we report thermal conductivity measurements on single crystals of Sr2RuO4 down to 50 mK for currents parallel and perpendicular to the c axis. We find that there is substantial quasiparticle transport in the T = 0 limit for both current directions. A magnetic field H immediately excites quasiparticles with velocities both in the basal plane and in the c direction. Our data down to Tc/30 and down to Hc/100 show no evidence that the nodes are in fact deep minima. Relative to the normal state, the thermal conductivity of the superconducting state is found to be very similar for the two current directions, from H = 0 to H = Hc2. These findings show that the gap structure of Sr2RuO4 consists of vertical line nodes. Given that the c-axis dispersion (warping) of the Fermi surface in Sr2RuO4 varies strongly from surface to surface, the small a-c anisotropy suggests that the line nodes are present on all three sheets of the Fermi surface. If imposed by symmetry, vertical line nodes would be inconsistent with a p-wave order parameter for Sr2RuO4. To reconcile the gap structure revealed by our data with a p-wave state, a mechanism must be found that produces accidental line nodes in Sr2RuO4.
117 - K.Izawa , Y.Kasahara , Y.Matsuda 2005
The superconducting gap structure of recently discovered heavy fermion CePt_3Si without spatial inversion symmetry was investigated by thermal transport measurements down to 40 mK. In zero field a residual T-linear term was clearly resolved as T-> 0, with a magnitude in good agreement with the value expected for a residual normal fluid with a nodal gap structure, together with a T^2-dependence at high temperatures. With an applied magnetic fields, the thermal conductivity grows rapidly, in dramatic contrast to fully gapped superconductors, and exhibits one-parameter scaling with T/sqrt{H}. These results place an important constraint on the order parameter symmetry, that is CePt_3Si is most likely to have line nodes.
The thermal conductivity k of the iron-arsenide superconductor Ba(Fe_{1-x}Co_x)_2As_2 was measured down to 50 mK for a heat current parallel (k_c) and perpendicular (k_a) to the tetragonal c axis, for seven Co concentrations from underdoped to overdo ped regions of the phase diagram (0.038 < x < 0.127). A residual linear term k_c0/T is observed in the T = 0 limit when the current is along the c axis, revealing the presence of nodes in the gap. Because the nodes appear as x moves away from the concentration of maximal T_c, they must be accidental, not imposed by symmetry, and are therefore compatible with an s_{+/-} state, for example. The fact that the in-plane residual linear term k_a0/T is negligible at all x implies that the nodes are located in regions of the Fermi surface that contribute strongly to c-axis conduction and very little to in-plane conduction. Application of a moderate magnetic field (e.g. H_c2/4) excites quasiparticles that conduct heat along the a axis just as well as the nodal quasiparticles conduct along the c axis. This shows that the gap must be very small (but non-zero) in regions of the Fermi surface which contribute significantly to in-plane conduction. These findings can be understood in terms of a strong k dependence of the gap Delta(k) which produces nodes on a Fermi surface sheet with pronounced c-axis dispersion and deep minima on the remaining, quasi-two-dimensional sheets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا