ﻻ يوجد ملخص باللغة العربية
In this work, the different exchange freedom, one gluon, one pion or Goldstone boson, in constituent quark model is investigated, which is responsible to the hyperfine interaction between constituent quarks, via the combined analysis of the eta production processes, $pi^{-}prightarroweta n$ and $gamma prightarroweta p$. With the Goldstone-boson exchange, as well as the one-gluon or one-pion exchange, both the spectrum and observables, such as, the differential cross section and polarized beam asymmetry, are fitted to the suggested values of Particle Data Group and the experimental data. The first two types of exchange freedoms give acceptable description of the spectrum and observables while the one pion exchange can not describe the observables and spectrum simultaneously, so can be excluded. The experimental data for the two processes considered here strongly support the mixing angles for two lowest S11 sates and D13 states as about -30 and 6 degree respectively.
The dynamics of shower development for a jet traveling through the QGP involves a variety of scales, one of them being the heavy quark mass. Even though the mass of the heavy quarks plays a subdominant role during the high virtuality portion of the j
This snapshot of recent progress in hadron physics made in connection with QCDs Dyson-Schwinger equations includes: a perspective on confinement and dynamical chiral symmetry breaking (DCSB); a precis on the physics of in-hadron condensates; results
We highlight Hermiticity issues in bound-state equations whose kernels are subject to a highly asymmetric mass and momentum distribution and whose eigenvalue spectrum becomes complex for radially excited states. We trace back the presence of imaginar
A formalism based on a chiral quark model ($chi$QM) approach complemented with a one-gluon exchange model, to take into account the breakdown of the $SU(6)otimes O(3)$ symmetry, is presented. The configuration mixing of wave functions for nucleon and
We study $eta$ photoproduction off the deuteron ($gamma dtoeta pn$) at a special kinematics: $sim 0.94$ GeV of the photon beam energy and $sim 0^circ$ of the scattering angle of the proton. This kinematics is ideal to extract the low-energy $eta$-nuc