ﻻ يوجد ملخص باللغة العربية
Vista Variables in the Via Lactea (VVV) is an ESO Public Survey that is performing a variability survey of the Galactic bulge and part of the inner disk using ESOs Visible and Infrared Survey Telescope for Astronomy (VISTA). The survey covers 520 deg^2 of sky area in the ZYJHK_S filters, for a total observing time of 1929 hours, including ~ 10^9 point sources and an estimated ~ 10^6 variable stars. Here we describe the current status of the VVV Survey, in addition to a variety of new results based on VVV data, including light curves for variable stars, newly discovered globular clusters, open clusters, and associations. A set of reddening-free indices based on the ZYJHK_S system is also introduced. Finally, we provide an overview of the VVV Templates Project, whose main goal is to derive well-defined light curve templates in the near-IR, for the automated classification of VVV light curves.
The VISTA Variables in the Via Lactea (VVV) survey is one of six public ESO surveys, and is now in its 4th year of observing. Although far from being complete, the VVV survey has already delivered many results, some directly connected to the intended
We describe the public ESO near-IR variability survey (VVV) scanning the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high. The survey will take 1929 hours of observations with the 4-metre VISTA telescope
The ESO Public Survey VISTA Variables in the Via Lactea (VVV) started in 2010. VVV targets 562 sq. deg in the Galactic bulge and an adjacent plane region and is expected to run for ~5 years. In this paper we describe the progress of the survey observ
We report the first confirmed detection of the galaxy cluster VVV-J144321-611754 at very low latitudes (l = 315.836$^{circ}$, b = -1.650$^{circ}$) located in the tile d015 of the VISTA Variables in the Via Lactea (VVV) survey. We defined the region o
We search for extragalactic sources in the VISTA Variables in the Via Lactea survey that are hidden by the Galaxy. Herein, we describe our photometric procedure to find and characterize extragalactic objects using a combination of SExtractor and PSFE