ﻻ يوجد ملخص باللغة العربية
Cryptography algorithm standards play a key role both to the practice of information security and to cryptography theory research. Among them, the MQV and HMQV protocols ((H)MQV, in short) are a family of (implicitly authenticated) Diffie-Hellman key-exchange (DHKE) protocols that are widely standardized and deployed. In this work, from some new perspectives and approaches and under some new design rationales and insights, we develop a new family of practical implicitly authenticated DHKE protocols, which enjoy notable performance among security, privacy, efficiency and easy deployment. We make detailed comparisons between our new DHKE protocols and (H)MQV, showing that the newly developed protocols outperform HMQV in most aspects. Along the way, guided by our new design rationales, we also identify a new vulnerability (H)MQV, which brings some new perspectives (e.g., computational fairness) to the literature.
The Internet of Things (IoT) is a fast growing field of devices being added to an interconnected environment in an abstract heterogeneous array of servers and other devices, called smart environments, ranging from private local (home) environments to
Key establishment is one fundamental issue in wireless security. The widely used Diffie-Hellman key exchange is vulnerable to the man-in-the-middle attack. This paper presents a novel in-band solution for defending the man-in-the-middle attack during
We construct several explicit quantum secure non-malleable-extractors. All the quantum secure non-malleable-extractors we construct are based on the constructions by Chattopadhyay, Goyal and Li [2015] and Cohen [2015]. 1) We construct the first exp
Non-malleable secret sharing was recently proposed by Goyal and Kumar in independent tampering and joint tampering models for threshold secret sharing (STOC18) and secret sharing with general access structure (CRYPTO18). The idea of making secret sha
We present a new oblivious RAM that supports variable-sized storage blocks (vORAM), which is the first ORAM to allow varying block sizes without trivial padding. We also present a new history-independent data structure (a HIRB tree) that can be store