ﻻ يوجد ملخص باللغة العربية
We consider stationary processes with long memory which are non-Gaussian and represented as Hermite polynomials of a Gaussian process. We focus on the corresponding wavelet coefficients and study the asymptotic behavior of the sum of their squares since this sum is often used for estimating the long-memory parameter. We show that the limit is not Gaussian but can be expressed using the non-Gaussian Rosenblatt process defined as a Wiener It^o integral of order 2. This happens even if the original process is defined through a Hermite polynomial of order higher than 2.
We consider the nonparametric functional estimation of the drift of a Gaussian process via minimax and Bayes estimators. In this context, we construct superefficient estimators of Stein type for such drifts using the Malliavin integration by parts fo
Discrete time trawl processes constitute a large class of time series parameterized by a trawl sequence (a j) j$in$N and defined though a sequence of independent and identically distributed (i.i.d.) copies of a continuous time process ($gamma$(t)) t$
In this paper, we address the estimation of the sensitivity indices called Shapley eects. These sensitivity indices enable to handle dependent input variables. The Shapley eects are generally dicult to estimate, but they are easily computable in the
In this paper, we consider an inference problem for the first order autoregressive process driven by a long memory stationary Gaussian process. Suppose that the covariance function of the noise can be expressed as $abs{k}^{2H-2}$ times a function slo
We provide the strong approximation of empirical copula processes by a Gaussian process. In addition we establish a strong approximation of the smoothed empirical copula processes and a law of iterated logarithm.