ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass Loss in 2D ZAMS Stellar Models

140   0   0.0 ( 0 )
 نشر من قبل Catherine Lovekin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C.C. Lovekin




اسأل ChatGPT حول البحث

A large number of massive stars are known to rotate, resulting in significant distortion and variation in surface temperature from the pole to the equator. Radiatively driven mass loss is temperature dependent, so rapid rotation produces variation in mass loss and angular momentum loss rates across the surface of the star, which is expected to affect the evolution of rapidly rotating massive stars. In this work, we investigate the two dimensional effects of rotation on radiatively driven mass loss and the associated loss of angular momentum in ZAMS models with solar metallicity. Using 2D stellar models, which give the variation in surface parameters as a function of co-latitude, we implement two different mass loss prescriptions describing radiatively driven mass loss. We find a significant variation in mass loss rates and angular momentum loss as a function of co-latitude. We find that the mass loss rate decreases as the rotation rate increases for models at constant initial mass, and derive scaling relations based on these models. When comparing 2D to 1D mass loss rates, we find that although the total angle integrated mass loss does not differ significantly, the 2D models predict less mass loss from the equator and more mass loss from the pole than the 1D predictions using von Zeipels law. As a result, rotating models lose less angular momentum in 2D than in 1D, which will change the subsequent evolution of the star. The evolution of these models will be investigated in future work.



قيم البحث

اقرأ أيضاً

286 - Francesco Palla 2005
Young stars on their way to the ZAMS evolve in significantly different ways depending on mass. While the theoretical and observational properties of low- and intermediate-mass stars are rather well understood and/or empirically tested, the situation for massive stars (>10-15 Msun) is, to say the least, still elusive. On theoretical grounds, the PMS evolution of these objects should be extremely short, or nonexistent at all. Observationally, despite a great deal of effort, the simple (or bold) predictions of simplified models of massive star formation/evolution have proved more difficult to be checked. After a brief review of the theoretical expectations, I will highlight some critical test on young stars of various masses.
We present an N-body computer code - aimed at studies of galactic dynamics - with a CPU-efficient algorithm for a continuous (i.e. time-dependent) stellar mass-loss. First, we summarize available data on stellar mass-loss and derive the long-term (20 Gyr) dependence of mass-loss rate of a coeval stellar population. We then implement it, through a simple parametric form, into a particle-mesh code with stellar and gaseous particles. We perform several tests of the algorithm reliability and show an illustrative application: a 2D simulation of a disk galaxy, starting as purely stellar but evolving as two-component due to gradual mass-loss from initial stars and due to star formation. In a subsequent paper we will use the code to study what changes are induced in galactic disks by the continuous gas recycling compared to the instantaneous recycling approximation, especially the changes in star formation rate and radial inflow of matter.
Accurate mass-loss rates are essential for meaningful stellar evolutionary models. For massive single stars with initial masses between 8 - 30msun the implementation of cool supergiant mass loss in stellar models strongly affects the resulting evolut ion, and the most commonly used prescription for these cool-star phases is that of de Jager. Recently, we published a new mdot prescription calibrated to RSGs with initial masses between 10 - 25msun, which unlike previous prescriptions does not over estimate mdot for the most massive stars. Here, we carry out a comparative study to the MESA-MIST models, in which we test the effect of altering mass-loss by recomputing the evolution of stars with masses 12-27msun with the new mdot-prescription implemented. We show that while the evolutionary tracks in the HR diagram of the stars do not change appreciably, the mass of the H-rich envelope at core-collapse is drastically increased compared to models using the de Jager prescription. This increased envelope mass would have a strong impact on the Type II-P SN lightcurve, and would not allow stars under 30msun to evolve back to the blue and explode as H-poor SN. We also predict that the amount of H-envelope around single stars at explosion should be correlated with initial mass, and we discuss the prospects of using this as a method of determining progenitor masses from supernova light curves.
73 - G. Alecian , M. J. Stift 2018
Calculating abundance stratifications in ApBp/HgMn star atmospheres, we are considering mass-loss in addition to atomic diffusion in our numerical code in order to achieve more realistic models. These numerical simulations with mass-loss solve the ti me dependent continuity equation for plane-parallel atmospheres; the procedure is iterated until stationary concentrations of the diffusing elements are obtained throughout a large part of the stellar atmosphere. We find that Mg stratifications in HgMn star atmospheres are particularly sensitive to the presence of a mass-loss. For main-sequence stars with $T_{rm{eff}}approx 12000$ K, the observed systematic mild underabundances of this element can be explained only if a mass-loss rate of around $4.2,10^{-14}$ solar mass per year is assumed in our models. Numerical simulations also reveal that the abundance stratification of P observed in the HgMn star HD53929 may be understood if a weak horizontal magnetic field of about 75G is present in this star. However, for a better comparison of our results with observations, it will be necessary to carry out 3D modelling, especially when magnetic fields and stellar winds -- which render the atmosphere anisotropic -- are considered together.
Massive stars lose a significant fraction of mass during their evolution. However, the corresponding mass-loss rates are rather uncertain. To improve this, we calculated global line-driven wind models for Galactic B supergiants. Our models predict ra dial wind structure directly from basic stellar parameters. The hydrodynamic structure of the flow is consistently determined from the photosphere in nearly hydrostatic equilibrium to supersonically expanding wind. The radiative force is derived from the solution of the radiative transfer equation in the comoving frame. We provide a simple formula that predicts theoretical mass-loss rates as a function of stellar luminosity and effective temperature. The mass-loss rate of B supergiants slightly decreases with temperature down to about 22.5 kK, where the region of recombination of Fe IV to Fe III starts to appear. In this region, which is about 5 kK wide, the mass-loss rate gradually increases by a factor of about 6. The increase of the mass-loss rate is associated with a gradual decrease of terminal velocities by a factor of about 2. We compared the predicted wind parameters with observations. While the observed wind terminal velocities are reasonably reproduced by the models, the situation with mass-loss rates is less clear. The mass-loss rates derived from observations that are uncorrected for clumping are by a factor of 3 to 9 higher than our predictions on cool and hot sides of the studied sample, respectively. These observations can be reconciled with theory assuming a temperature-dependent clumping factor. On the other hand, the mass-loss rate estimates that are not sensitive to clumping agree with our predictions much better. Our predictions are by a factor of about 10 lower than the values currently used in evolutionary models appealing for reconsideration of the role of winds in the stellar evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا