ﻻ يوجد ملخص باللغة العربية
The $^{150}$Nd($^3$He,$t$) reaction at 140 MeV/u and $^{150}$Sm($t$,$^3$He) reaction at 115 MeV/u were measured, populating excited states in $^{150}$Pm. The transitions studied populate intermediate states of importance for the (neutrinoless) $betabeta$ decay of $^{150}$Nd to $^{150}$Sm. Monopole and dipole contributions to the measured excitation-energy spectra were extracted by using multipole decomposition analyses. The experimental results were compared with theoretical calculations obtained within the framework of Quasiparticle Random-Phase Approximation (QRPA), which is one of the main methods employed for estimating the half-life of the neutrinoless $betabeta$ decay ($0 ubetabeta$) of $^{150}$Nd. The present results thus provide useful information on the neutrino responses for evaluating the $0 ubetabeta$ and $2 ubetabeta$ matrix elements. The $2 ubetabeta$ matrix element calculated from the Gamow-Teller transitions through the lowest $1^{+}$ state in the intermediate nucleus is maximally about half of that deduced from the half-life measured in $2 ubetabeta$ direct counting experiments and at least several transitions through $1^{+}$ intermediate states in $^{150}$Pm are required to explain the $2 ubetabeta$ half-life. Because Gamow-Teller transitions in the $^{150}$Sm($t$,$^3$He) experiment are strongly Pauli-blocked, the extraction of Gamow-Teller strengths was complicated by the excitation of the $2hbaromega$, $Delta L=0$, $Delta S=1$ isovector spin-flip giant monopole resonance (IVSGMR). However, the near absence of Gamow-Teller transition strength made it possible to cleanly identify this resonance, and the strength observed is consistent with the full exhaustion of the non-energy-weighted sum rule for the IVSGMR.
Double-beta decay is a rare nuclear process in which two neutrons in the nucleus are converted to two protons with the emission of two electrons and two electron anti-neutrinos. We measured the half life of the two-neutrino double-beta decay of $^{15
The double beta decay of $^{150}$Nd to the first excited 0$^+$ level of $^{150}$Sm ($E_{exc}$ = 740.5 keV) has been investigated with the help of the ultra-low-background setup consisting of four HP Ge (high-purity germanium) detectors (${approx}$ 22
We report the results of a first experimental search for lepton number violation by four units in the neutrinoless quadruple-$beta$ decay of $^{150}$Nd using a total exposure of $0.19$ kg$cdot$y recorded with the NEMO-3 detector at the Modane Undergr
Background: Inelastic proton scattering at energies of a few hundred MeV and very-forward angles including $0^circ$ has been established as a tool to study electric-dipole strength distributions in nuclei. The present work reports a systematic invest
Solar neutrinos interact within double-beta decay (BB) detectors and contribute to backgrounds for BB experiments. Background contributions due to solar neutrino interactions with BB nuclei of $^{82}$Se, $^{100}$Mo, and $^{150}$Nd are evaluated. They