ترغب بنشر مسار تعليمي؟ اضغط هنا

Preprocessing: A Prerequisite for Discovering Patterns in Web Usage Mining Process

101   0   0.0 ( 0 )
 نشر من قبل Ramya C
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Web log data is usually diverse and voluminous. This data must be assembled into a consistent, integrated and comprehensive view, in order to be used for pattern discovery. Without properly cleaning, transforming and structuring the data prior to the analysis, one cannot expect to find meaningful patterns. As in most data mining applications, data preprocessing involves removing and filtering redundant and irrelevant data, removing noise, transforming and resolving any inconsistencies. In this paper, a complete preprocessing methodology having merging, data cleaning, user/session identification and data formatting and summarization activities to improve the quality of data by reducing the quantity of data has been proposed. To validate the efficiency of the proposed preprocessing methodology, several experiments are conducted and the results show that the proposed methodology reduces the size of Web access log files down to 73-82% of the initial size and offers richer logs that are structured for further stages of Web Usage Mining (WUM). So preprocessing of raw data in this WUM process is the central theme of this paper.



قيم البحث

اقرأ أيضاً

Web log data is usually diverse and voluminous. This data must be assembled into a consistent, integrated and comprehensive view, in order to be used for pattern discovery. Without properly cleaning, transforming and structuring the data prior to the analysis, one cannot expect to find meaningful patterns. As in most data mining applications, data preprocessing involves removing and filtering redundant and irrelevant data, removing noise, transforming and resolving any inconsistencies. In this paper, a complete preprocessing methodology having merging, data cleaning, user/session identification and data formatting and summarization activities to improve the quality of data by reducing the quantity of data has been proposed. To validate the efficiency of the proposed preprocessing methodology, several experiments are conducted and the results show that the proposed methodology reduces the size of Web access log files down to 73-82% of the initial size and offers richer logs that are structured for further stages of Web Usage Mining (WUM). So preprocessing of raw data in this WUM process is the central theme of this paper.
215 - C. Ramya , , G. Kavitha 2011
In this paper, a complete preprocessing methodology for discovering patterns in web usage mining process to improve the quality of data by reducing the quantity of data has been proposed. A dynamic ART1 neural network clustering algorithm to group us ers according to their Web access patterns with its neat architecture is also proposed. Several experiments are conducted and the results show the proposed methodology reduces the size of Web log files down to 73-82% of the initial size and the proposed ART1 algorithm is dynamic and learns relatively stable quality clusters.
It is widely known that there is a lot of useful information hidden in big data, leading to a new saying that data is money. Thus, it is prevalent for individuals to mine crucial information for utilization in many real-world applications. In the pas t, studies have considered frequency. Unfortunately, doing so neglects other aspects, such as utility, interest, or risk. Thus, it is sensible to discover high-utility itemsets (HUIs) in transaction databases while utilizing not only the quantity but also the predefined utility. To find patterns that can represent the supporting transaction, a recent study was conducted to mine high utility-occupancy patterns whose contribution to the utility of the entire transaction is greater than a certain value. Moreover, in realistic applications, patterns may not exist in transactions but be connected to an existence probability. In this paper, a novel algorithm, called High-Utility-Occupancy Pattern Mining in Uncertain databases (UHUOPM), is proposed. The patterns found by the algorithm are called Potential High Utility Occupancy Patterns (PHUOPs). This algorithm divides user preferences into three factors, including support, probability, and utility occupancy. To reduce memory cost and time consumption and to prune the search space in the algorithm as mentioned above, probability-utility-occupancy list (PUO-list) and probability-frequency-utility table (PFU-table) are used, which assist in providing the downward closure property. Furthermore, an original tree structure, called support count tree (SC-tree), is constructed as the search space of the algorithm. Finally, substantial experiments were conducted to evaluate the performance of proposed UHUOPM algorithm on both real-life and synthetic datasets, particularly in terms of effectiveness and efficiency.
High-utility sequential pattern mining (HUSPM) has recently emerged as a focus of intense research interest. The main task of HUSPM is to find all subsequences, within a quantitative sequential database, that have high utility with respect to a user- defined minimum utility threshold. However, it is difficult to specify the minimum utility threshold, especially when database features, which are invisible in most cases, are not understood. To handle this problem, top-k HUSPM was proposed. Up to now, only very preliminary work has been conducted to capture top-k HUSPs, and existing strategies require improvement in terms of running time, memory consumption, unpromising candidate filtering, and scalability. Moreover, no systematic problem statement has been defined. In this paper, we formulate the problem of top-k HUSPM and propose a novel algorithm called TKUS. To improve efficiency, TKUS adopts a projection and local search mechanism and employs several schemes, including the Sequence Utility Raising, Terminate Descendants Early, and Eliminate Unpromising Items strategies, which allow it to greatly reduce the search space. Finally, experimental results demonstrate that TKUS can achieve sufficiently good top-k HUSPM performance compared to state-of-the-art algorithm TKHUS-Span.
We perform a statistical analysis of scientific-publication data with a goal to provide quantitative analysis of scientific process. Such an investigation belongs to the newly established field of scientometrics: a branch of the general science of sc ience that covers all quantitative methods to analyze science and research process. As a case study we consider download and citation statistics of the journal `Europhysics Letters (EPL), as Europes flagship letters journal of broad interest to the physics community. While citations are usually considered as an indicator of academic impact, downloads reflect rather the level of attractiveness or popularity of a publication. We discuss peculiarities of both processes and correlations between them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا