ﻻ يوجد ملخص باللغة العربية
Web log data is usually diverse and voluminous. This data must be assembled into a consistent, integrated and comprehensive view, in order to be used for pattern discovery. Without properly cleaning, transforming and structuring the data prior to the analysis, one cannot expect to find meaningful patterns. As in most data mining applications, data preprocessing involves removing and filtering redundant and irrelevant data, removing noise, transforming and resolving any inconsistencies. In this paper, a complete preprocessing methodology having merging, data cleaning, user/session identification and data formatting and summarization activities to improve the quality of data by reducing the quantity of data has been proposed. To validate the efficiency of the proposed preprocessing methodology, several experiments are conducted and the results show that the proposed methodology reduces the size of Web access log files down to 73-82% of the initial size and offers richer logs that are structured for further stages of Web Usage Mining (WUM). So preprocessing of raw data in this WUM process is the central theme of this paper.
Web log data is usually diverse and voluminous. This data must be assembled into a consistent, integrated and comprehensive view, in order to be used for pattern discovery. Without properly cleaning, transforming and structuring the data prior to the
In this paper, a complete preprocessing methodology for discovering patterns in web usage mining process to improve the quality of data by reducing the quantity of data has been proposed. A dynamic ART1 neural network clustering algorithm to group us
It is widely known that there is a lot of useful information hidden in big data, leading to a new saying that data is money. Thus, it is prevalent for individuals to mine crucial information for utilization in many real-world applications. In the pas
High-utility sequential pattern mining (HUSPM) has recently emerged as a focus of intense research interest. The main task of HUSPM is to find all subsequences, within a quantitative sequential database, that have high utility with respect to a user-
We perform a statistical analysis of scientific-publication data with a goal to provide quantitative analysis of scientific process. Such an investigation belongs to the newly established field of scientometrics: a branch of the general science of sc