ﻻ يوجد ملخص باللغة العربية
The Ring Imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN are equipped with Hybrid Photo-Detectors. These vacuum photo-detectors are affected by the stray magnetic field of the LHCb magnet, which degrades their imaging properties. This effect increases the error on the Cherenkov angle measurement and would reduce the particle identification capabilities of LHCb. A system has been developed for the RICH2 Ring Imaging Cherenkov detector to perform a detailed characterisation of the magnetic distortion effects. It is described, along with the methods implemented to correct for these effects, restoring the optimal resolution.
A Ring Imaging v{C}erenkov detector built for the BRAHMS experiment at the Brookhaven RHIC is described. This detector has a high index of refraction gas radiator. v{C}erenkov light is focused on a photo-multiplier based photon detector with a large
Recently, the last two modules (out of seven) of the ALICE High Momentum Particle Identification detector (HMPID) were assembled and tested. The full detector, after a pre-commissioning phase, has been installed in the experimental area, inside the A
The LHCb RICH1 detector uses hybrid photon detectors (HPDs) as its optical sensors. A calibration system has been constructed to provide corrections for distortions that are primarily due to external magnetic fields. We describe here the system design, construction, operation and performance.
Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of
LHCb is one of the four main experiments of the Large Hadron Collider (LHC) project, which will start at CERN in 2008. The experiment is primarily dedicated to B-Physics and hence requires precise vertex reconstruction. The silicon vertex locator (VE