ترغب بنشر مسار تعليمي؟ اضغط هنا

Warm and dense stellar matter under strong magnetic fields

211   0   0.0 ( 0 )
 نشر من قبل Aziz Rabhi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effects of strong magnetic fields on the equation of state of warm stellar matter as it may occur in a protoneutron star. Both neutrino free and neutrino trapped matter at a fixed entropy per baryon are analyzed. A relativistic mean field nuclear model, including the possibility of hyperon formation, is considered. A density dependent magnetic field with the magnitude $10^{15}$ G at the surface and not more than $3times 10^{18}$ G at the center is considered. The magnetic field gives rise to a neutrino suppression, mainly at low densities, in matter with trapped neutrinos. It is shown that an hybrid protoneutron star will not evolve to a low mass blackhole if the magnetic field is strong enough and the magnetic field does not decay. However, the decay of the magnetic field after cooling may give rise to the formation of a low mass blackhole.



قيم البحث

اقرأ أيضاً

We simulate neutrino-antineutrino oscillations caused by strong magnetic fields in dense matter. With the strong magnetic fields and large neutrino magnetic moments, Majorana neutrinos can reach flavor equilibrium. We find that the flavor equilibrati on of neutrino-antineutrino oscillations is sensitive to the values of the baryon density and the electron fraction inside the matter. The neutrino-antineutrino oscillations are suppressed in the case of the large baryon density in neutron (proton)-rich matter. On the other hand, the flavor equilibration occurs when the electron fraction is close to $0.5$ even in the large baryon density. From the simulations, we propose a necessary condition for the equilibration of neutrino-antineutrino oscillations in dense matter. We also study whether such necessary condition is satisfied near the proto-neutron star by using results of neutrino hydrodynamic simulations of core-collapse supernovae. In our explosion model, the flavor equilibration would be possible if the magnetic field on the surface of the proto-neutron star is larger than $10^{14}$ G which is the typical value of the magnetic fields of magnetars.
130 - G. Lugones , A. G. Grunfeld 2018
We study the surface tension of hot, highly magnetized three flavor quark matter droplets, focusing specifically on the thermodynamic conditions prevailing in neutron stars, hot lepton rich protoneutron stars and neutron star mergers. We explore the role of temperature, baryon number density, trapped neutrinos, droplet size and magnetic fields within the multiple reflection expansion formalism (MRE), assuming that astrophysical quark matter can be described as a mixture of free Fermi gases composed by quarks $u$, $d$, $s$, electrons and neutrinos, in chemical equilibrium under weak interactions. We find that the total surface tension is rather unaffected by the size of the drop, but is quite sensitive to the effect of baryon number density, temperature, trapped neutrinos and magnetic fields (specially above $eB sim 5 times 10^{-3} mathrm{GeV}^2$). Surface tensions parallel and transverse to the magnetic field span values up to $sim$ 25 MeV/fm$^2$. For $T lesssim 100$ MeV the surface tension is a decreasing function of temperature but above 100 MeV it increases monotonically with $T$. Finally, we discuss some astrophysical consequences of our results.
263 - D.P.Menezes 2008
In the present work we use the large-$N_c$ approximation to investigate quark matter described by the SU(2) Nambu--Jona-Lasinio model subject to a strong magnetic field. The Landau levels are filled in such a way that usual kinks appear in the effect ive mass and other related quantities. $beta$-equilibrium is also considered and the macroscopic properties of a magnetar described by this quark matter is obtained. Our study shows that the magnetar masses and radii are larger if the magnetic field increases but only very large fields ($ge 10^{18}$ G) affect the EoS in a non negligible way.
Using relativistic mean-field models, the formation of clusterized matter, as the one expected to exist in the inner crust of neutron stars, is determined under the effect of strong magnetic fields. As already predicted from a calculation of the unst able modes resulting from density fluctuations at subsaturation densities, we confirm in the present work that for magnetic field intensities of the order of $approx 5 times 10^{16}$ G to $5 times 10^{17}$ G, pasta phases may occur for densities well above the zero-field crust-core transition density. This confirms that the extension of the crust may be larger than expected. It is also verified that the equilibrium structure of the clusterized matter is very sensitive to the intensity of the magnetic fields. As a result, the decay of the magnetic field may give rise to internal stresses which may result on the yield and fracture of the inner crust lattice.
The properties of hybrid stars formed by hadronic and quark matter in beta-equilibrium at fixed entropies are described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. In this work we include the possibilit y of neutrino trapped EOS and compare the star properties with the ones obtained after deleptonization, when neutrinos have already diffused out. We use the nonlinear Walecka model for the hadron matter with two different sets for the hyperon couplings and the MIT Bag and the Nambu-Jona-Lasinio models for the quark matter. The phase transition to a deconfined quark phase is investigated. Depending on the model and the parameter set used, the mixed phase may or may not exist in the EOS at high densities. The star properties are calculated for each equation of state. The maximum mass stellar configurations obtained within the NJL have larger masses than the ones obtained within the Bag model. The Bag model predicts a mixed phase in the interior of the most massive stable stars while, depending on the hyperon couplings, the NJL model predicts a mixed phase or pure quark matter. Comparing with neutrino free stars, the maximum allowed baryonic masses for protoneutron stars are $sim 0.4 M_odot$ larger for the Bag model and $sim 0.1 M_odot$ larger for the NJL model when neutrino trapping is imposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا