ﻻ يوجد ملخص باللغة العربية
In this paper, whose aims are mainly pedagogical, we illustrate how to use the local zeta regularization to compute the stress-energy tensor of the Casimir effect. Our attention is devoted to the case of a neutral, massless scalar field in flat space-time, on a space domain with suitable (e.g., Dirichlet) boundary conditions. After a simple outline of the local zeta method, we exemplify it in the typical case of a field between two parallel plates, or outside them. The results are shown to agree with the ones obtained by more popular methods, such as point splitting regularization. In comparison with these alternative methods, local zeta regularization has the advantage to give directly finite results via analitic continuation, with no need to remove or subtract divergent quantities.
In Part I of this series of papers we have described a general formalism to compute the vacuum effects of a scalar field via local (or global) zeta regularization. In the present Part II we exemplify the general formalism in a number of cases which c
Applying the general framework for local zeta regularization proposed in Part I of this series of papers, we compute the renormalized vacuum expectation value of several observables (in particular, of the stress-energy tensor and of the total energy)
Applying the general framework for local zeta regularization proposed in Part I of this series of papers, we renormalize the vacuum expectation value of the stress-energy tensor (and of the total energy) for a scalar field in presence of an external harmonic potential.
This is the first one of a series of papers about zeta regularization of the divergences appearing in the vacuum expectation value (VEV) of several local and global observables in quantum field theory. More precisely we consider a quantized, neutral
The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challe