ترغب بنشر مسار تعليمي؟ اضغط هنا

Local zeta regularization and the Casimir effect

140   0   0.0 ( 0 )
 نشر من قبل Livio Pizzocchero
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, whose aims are mainly pedagogical, we illustrate how to use the local zeta regularization to compute the stress-energy tensor of the Casimir effect. Our attention is devoted to the case of a neutral, massless scalar field in flat space-time, on a space domain with suitable (e.g., Dirichlet) boundary conditions. After a simple outline of the local zeta method, we exemplify it in the typical case of a field between two parallel plates, or outside them. The results are shown to agree with the ones obtained by more popular methods, such as point splitting regularization. In comparison with these alternative methods, local zeta regularization has the advantage to give directly finite results via analitic continuation, with no need to remove or subtract divergent quantities.



قيم البحث

اقرأ أيضاً

166 - Davide Fermi 2015
In Part I of this series of papers we have described a general formalism to compute the vacuum effects of a scalar field via local (or global) zeta regularization. In the present Part II we exemplify the general formalism in a number of cases which c an be solved explicitly by analytical means. More in detail we deal with configurations involving parallel or perpendicular planes and we also discuss the case of a three-dimensional wedge.
219 - Davide Fermi 2015
Applying the general framework for local zeta regularization proposed in Part I of this series of papers, we compute the renormalized vacuum expectation value of several observables (in particular, of the stress-energy tensor and of the total energy) for a massless scalar field confined within a rectangular box of arbitrary dimension.
254 - Davide Fermi 2015
Applying the general framework for local zeta regularization proposed in Part I of this series of papers, we renormalize the vacuum expectation value of the stress-energy tensor (and of the total energy) for a scalar field in presence of an external harmonic potential.
153 - Davide Fermi 2015
This is the first one of a series of papers about zeta regularization of the divergences appearing in the vacuum expectation value (VEV) of several local and global observables in quantum field theory. More precisely we consider a quantized, neutral scalar field on a domain in any spatial dimension, with arbitrary boundary conditions and, possibly, in presence of an external classical potential. We analyze, in particular, the VEV of the stress-energy tensor, the corresponding boundary forces and the total energy, thus taking into account both local and global aspects of the Casimir effect. In comparison with the wide existing literature on these subjects, we try to develop a more systematic approach, allowing to treat specific configurations by mere application of a general machinery. The present Part I is mainly devoted to setting up this general framework; at the end of the paper, this is exemplified in a very simple case. In Parts II, III and IV we will consider more engaging applications, indicated in the Introduction of the present work.
The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challe nging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا