ﻻ يوجد ملخص باللغة العربية
The fractional Poisson process (FPP) is a counting process with independent and identically distributed inter-event times following the Mittag-Leffler distribution. This process is very useful in several fields of applied and theoretical physics including models for anomalous diffusion. Contrary to the well-known Poisson process, the fractional Poisson process does not have stationary and independent increments. It is not a Levy process and it is not a Markov process. In this letter, we present formulae for its finite-dimensional distribution functions, fully characterizing the process. These exact analytical results are compared to Monte Carlo simulations.
We introduce a non-homogeneous fractional Poisson process by replacing the time variable in the fractional Poisson process of renewal type with an appropriate function of time. We characterize the resulting process by deriving its non-local governing
The fractional non-homogeneous Poisson process was introduced by a time-change of the non-homogeneous Poisson process with the inverse $alpha$-stable subordinator. We propose a similar definition for the (non-homogeneous) fractional compound Poisson
This paper introduces a generalization of the so-called space-fractional Poisson process by extending the difference operator acting on state space present in the associated difference-differential equations to a much more general form. It turns out
In this paper, we quantitatively investigate the properties of a statistical ensemble of stock prices. We focus attention on the relative price defined as $ X(t) = S(t)/S(0) $, where $ S(0) $ is the initial price. We selected approximately 3200 stock
Labour productivity distribution (dispersion) is studied both theoretically and empirically. Superstatistics is presented as a natural theoretical framework for productivity. The demand index $kappa$ is proposed within this framework as a new busines