ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Optomechanics in the Bistable Regime

182   0   0.0 ( 0 )
 نشر من قبل Roohollah Ghobadi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the simplest optomechanical system with a focus on the bistable regime. The covariance matrix formalism allows us to study both cooling and entanglement in a unified framework. We identify two key factors governing entanglement, namely the bistability parameter, i.e. the distance from the end of a stable branch in the bistable regime, and the effective detuning, and we describe the optimum regime where entanglement is greatest. We also show that in general entanglement is a non-monotonic function of optomechanical coupling. This is especially important in understanding the optomechanical entanglement of the second stable branch.



قيم البحث

اقرأ أيضاً

Interaction with a thermal environment decoheres the quantum state of a mechanical oscillator. When the interaction is sufficiently strong, such that more than one thermal phonon is introduced within a period of oscillation, quantum coherent oscillat ions are prevented. This is generally thought to preclude a wide range of quantum protocols. Here, we introduce a pulsed optomechanical protocol that allows ground state cooling, general linear quantum non-demolition measurements, optomechanical state swaps, and quantum state preparation and tomography without requiring quantum coherent oscillations. Finally we show how the protocol can break the usual thermal limit for sensing of impulse forces.
We give a theoretical description of a coherently driven opto-mechanical system with a single added photon. The photon source is modeled as a cavity which initially contains one photon and which is irreversibly coupled to the opto-mechanical system. We show that the probability for the additional photon to be emitted by the opto-mechanical cavity will exhibit oscillations under a Lorentzian envelope, when the driven interaction with the mechanical resonator is strong enough. Our scheme provides a feasible route towards quantum state transfer between optical photons and micromechanical resonators.
Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscill ators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing and state purification of a mechanical resonator using short optical pulses. The scheme presented allows observation of mechanical quantum features despite preparation from a thermal state and is shown to be experimentally feasible using optical microcavities. Our framework thus provides a promising means to explore the quantum nature of massive mechanical oscillators and can be applied to other systems such as trapped ions.
148 - C. Doolin , B.D. Hauer , P.H. Kim 2014
We have observed nonlinear transduction of the thermomechanical motion of a nanomechanical resonator when detected as laser transmission through a sideband unresolved optomechanical cavity. Nonlinear detection mechanisms are of considerable interest as special cases allow for quantum nondemolition measurements of the mechanical resonators energy. We investigate the origin of the nonlinearity in the optomechanical detection apparatus and derive a theoretical framework for the nonlinear signal transduction, and the optical spring effect, from both nonlinearities in the optical transfer function and second order optomechanical coupling. By measuring the dependence of the linear and nonlinear signal transduction -- as well as the mechanical frequency shift -- on laser detuning from optical resonance, we provide estimates of the contributions from the linear and quadratic optomechanical couplings.
Wave mixing is an archetypical phenomenon in bosonic systems. In optomechanics, the bi-directional conversion between electromagnetic waves or photons at optical frequencies and elastic waves or phonons at radio frequencies is building on precisely t his fundamental principle. Surface acoustic waves provide a versatile interconnect on a chip and, thus, enable the optomechanical control of remote systems. Here, we report on the coherent nonlinear three-wave mixing between the coherent fields of two radio frequency surface acoustic waves and optical laser photons via the dipole transition of a single quantum dot exciton. In the resolved sideband regime, we demonstrate fundamental acoustic analogues of sum and difference frequency generation between the two SAWs and employ phase matching to deterministically enhance or suppress individual sidebands. This bi-directional transfer between the acoustic and optical domains is described by theory which fully takes into account direct and virtual multi-phonon processes. Finally, we show that the precision of the wave mixing is limited by the frequency accuracy of modern radio frequency electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا