ﻻ يوجد ملخص باللغة العربية
Rapidly rotating, slightly non-axisymmetric neutron stars emit nearly periodic gravitational waves (GWs), quite possibly at levels detectable by ground-based GW interferometers. We refer to these sources as GW pulsars. For any given sky position and frequency evolution, the F-statistic is the optimal (frequentist) statistic for the detection of GW pulsars. However, in all-sky searches for previously unknown GW pulsars, it would be computationally intractable to calculate the (fully coherent) F-statistic at every point of a (suitably fine) grid covering the parameter space: the number of gridpoints is many orders of magnitude too large for that. Here we introduce a phase-relaxed F-statistic, which we denote F_pr, for incoherently combining the results of fully coherent searches over short time intervals. We estimate (very roughly) that for realistic searches, our F_pr is ~10-15% more sensitive than the semi-coherent F-statistic that is currently used. Moreover, as a byproduct of computing F_pr, one obtains a rough determination of the time-evolving phase offset between ones template and the true signal imbedded in the detector noise. Almost all the ingredients that go into calculating F_pr are already implemented in LAL, so we expect that relatively little additional effort would be required to develop a search code that uses F_pr.
We present an implementation of the $mathcal{F}$-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars.
We report on our F-statistic search for white-dwarf binary signals in the Mock LISA Data Challenge 1B (MLDC1B). We focus in particular on the improvements in our search pipeline since MLDC1, namely refinements in the search pipeline and the use of a
Model waveforms are used in gravitational wave data analysis to detect and then to measure the properties of a source by matching the model waveforms to the signal from a detector. This paper derives accuracy standards for model waveforms which are s
We present the FastEMRIWaveforms (FEW) package, a collection of tools to build and analyze extreme mass ratio inspiral (EMRI) waveforms. Here, we expand on the Physical Review Letter that introduced the first fast and accurate fully-relativistic EMRI
We describe an F-statistic search for continuous gravitational waves from galactic white-dwarf binaries in simulated LISA Data. Our search method employs a hierarchical template-grid based exploration of the parameter space. In the first stage, candi