ﻻ يوجد ملخص باللغة العربية
In 2001, the discovery of circumstellar water vapour around the ageing carbon star IRC+10216 was announced. This detection challenged the current understanding of chemistry in old stars, since water vapour was predicted to be absent in carbon-rich stars. Several explanations for the occurrence of water vapour were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star, grain surface reactions, and photochemistry in the outer circumstellar envelope. However, the only water line detected so far from one carbon-rich evolved star can not discriminate, by itself, between the different mechanisms proposed. Here we report on the detection by the Herschel satellite of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC+10216, including some high-excitation lines with energies corresponding to ~1000 K. The emission of these high-excitation water lines can only be explained if water vapour is present in the warm inner region of the envelope. A plausible explanation for the formation of warm water vapour appears to be the penetration of ultraviolet (UV) photons deep into a clumpy circumstellar envelope. This mechanism triggers also the formation of other molecules such as ammonia, whose observed abundances are much higher than hitherto predicted.
We report the discovery of water vapour toward the carbon star V Cygni. We have used Herschels HIFI instrument, in dual beam switch mode, to observe the 1(11) - 0(00) para-water transition at 1113.3430 GHz in the upper sideband of the Band 4b receive
Line spectra of 68 Taurus T Tauri stars were obtained with the Herschel-PACS (Photodetector Array Camera & Spectrometer) instrument as part of the GASPS (Gas Evolution in Protoplanetary Systems) survey of protoplanetary discs. A careful examination o
Water fountains (WFs) are evolved objects showing high-velocity, collimated jets traced by water maser emission. Most of them are in the post-Asymptotic Giant Branch and they may represent one of the first manifestations of collimated mass loss in ev
Warm absorber (WA) is an ionised gas present in the line of sight to the AGN central engine. The effect of the absorber is imprinted in the absorption lines observed in X-ray spectra of AGN. In this work, we model the WA in Seyfert 1 galaxy Mrk 509 u
CIT 6 is a carbon star in the transitional phase from the asymptotic giant branch (AGB) to the protoplanetary nebulae (pPN). Observational evidences of two point sources in the optical, circumstellar arc segments in an HC$_3$N line emission, and a bi