ﻻ يوجد ملخص باللغة العربية
Hadron inclusive spectra in pp collisions are analyzed within the modified quark-gluon string model including both the longitudinal and transverse motion of quarks in the proton in the wide region of initial energies. The self-consistent analysis shows that the experimental data on the inclusive spectra of light hadrons like pions and kaons at ISR energies can be satisfactorily described at transverse momenta not larger than 1-2 GeV/c. We discuss some difficulties to apply this model at energies above the ISR and suggest to include the distribution of gluons in the proton unintegrated over the internal transverse momentum. It leads to an increase in the inclusive spectra of hadrons and allows us to extend the satisfactory description of the data in the central rapidity region at energies higher than ISR.
The hadron inclusive spectra in pp collisions at high energies are analyzed within a soft QCD model, namely the quark-gluon string model. In addition to the sea quark distribution in the incoming proton we consider also the unintegrated gluon distrib
We analyze the inclusive spectra of hadrons produced in $pp$ collisions at high energies in the mid-rapidity region within the soft QCD and perturbative QCD assuming the possible creation of the soft gluons at low intrinsic transverse momenta $k_t$.
Phenomenological Tsallis fits to the CMS, ATLAS, and ALICE transverse momentum spectra of hadrons for pp collisions at LHC were recently found to extend over a large range of the transverse momentum. We investigate whether the few degrees of freedom
Prospects for strangeness production in pp collisions at the Large Hadron Collider (LHC) are discussed within the statistical model. Firstly, the system size and the energy dependence of the model parameters are extracted from existing data and extra
We present a systematic analysis of transverse momentum $(p_{T})$ spectra of the strange hadrons in different multiplicity events produced in pp collision at $sqrt{s}$ = 7 TeV, pPb collision at $sqrt{s_{NN}}$ = 5.02 TeV and PbPb collision at $sqrt{s_