We present the results of two-dimensional and three-dimensional magnetohydrodynamical numerical simulations of relativistic magnetic reconnection, with particular emphasis on the dynamics of the plasma in a Petschek-type configuration with high Lundquist numbers, Ssim 10^5-10^8. The numerical scheme adopted, allowing for unprecedented accuracy for this type of calculations, is based on high order finite volume and discontinuous Galerkin methods as recently proposed by citet{Dumbser2009}. The possibility of producing high Lorentz factors is discussed, showing that Lorentz factors close to sim 4 can be produced for a plasma parameter sigma_m=20. Moreover, we find that the Sweet-Parker layers are unstable, generating secondary magnetic islands, but only for S > S_c = 10^8, much larger than what is reported in the Newtonian regime. Finally, the effects of a mildly anisotropic Ohm law are considered in a configuration with a guide magnetic field. Such effects produce only slightly faster reconnection rates and Lorentz factors of about 1% larger with respect to the perfectly isotropic Ohm law.