ﻻ يوجد ملخص باللغة العربية
Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained with the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly about 50 seconds) and those that are also burning helium (period spacing about 100 to 300 seconds).
The space-borne missions CoRoT and Kepler have revealed numerous mixed modes in red-giant stars. These modes carry a wealth of information about red-giant cores, but are of limited use when constraining rapid structural variations in their envelopes.
When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant, in which convection occupies a large fraction of the star. Conservation of angu
We present new multi-band (UBVI) time-series data of helium burning variables in the Carina dwarf spheroidal galaxy. The current sample includes 92 RR Lyrae-six of them are new identifications-and 20 Anomalous Cepheids, one of which is new identifica
A major uncertainty in the theory of stellar evolution is the angular momentum distribution inside stars and its change during stellar life. We compose a sample of 67 stars in the core-hydrogen burning phase with a $log,g$ value from high-resolution
Regions of rapid variation in the internal structure of a star are often referred to as acoustic glitches since they create a characteristic periodic signature in the frequencies of p modes. Here we examine the localized disturbance arising from the