ترغب بنشر مسار تعليمي؟ اضغط هنا

Disk Evolution in OB Associations - Deep Spitzer/IRAC Observations of IC 1795

166   0   0.0 ( 0 )
 نشر من قبل Veronica Roccatagliata
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a deep Spitzer/IRAC survey of the OB association IC 1795 carried out to investigate the evolution of protoplanetary disks in regions of massive star formation. Combining Spitzer/IRAC data with Chandra/ACIS observations, we find 289 cluster members. An additional 340 sources with an infrared excess, but without X-ray counterpart, are classified as cluster member candidates. Both surveys are complete down to stellar masses of about 1 Msun. We present pre-main sequence isochrones computed for the first time in the Spitzer/IRAC colors. The age of the cluster, determined via the location of the Class III sources in the [3.6]-[4.5]/[3.6] color-magnitude diagram, is in the range of 3 - 5 Myr. As theoretically expected, we do not find any systematic variation in the spatial distribution of disks within 0.6 pc of either O-type star in the association. However, the disk fraction in IC 1795 does depend on the stellar mass: sources with masses >2 Msun have a disk fraction of ~20%, while lower mass objects (2-0.8 Msun) have a disk fraction of ~50%. This implies that disks around massive stars have a shorter dissipation timescale.



قيم البحث

اقرأ أيضاً

157 - S. Guieu 2010
IC 2118, also known as the Witch Head Nebula, is a wispy, roughly cometary, ~5 degree long reflection nebula, and is thought to be a site of triggered star formation. In order to search for new young stellar objects (YSOs), we have observed this regi on in 7 mid- and far-infrared bands using the Spitzer Space Telescope and in 4 bands in the optical using the U. S. Naval Observatory 40-inch telescope. We find infrared excesses in 4 of the 6 previously-known T Tauri stars in our combined infrared maps, and we find 6 entirely new candidate YSOs, one of which may be an edge-on disk. Most of the YSOs seen in the infrared are Class II objects, and they are all in the head of the nebula, within the most massive molecular cloud of the region.
We present infrared photometry of all 36 potential JWST calibrators for which there is archival Spitzer IRAC data. This photometry can then be used to inform stellar models necessary to provide absolute calibration for all JWST instruments. We descri be in detail the steps necessary to measure IRAC photometry from archive retrieval to photometric corrections. To validate our photometry we examine the distribution of uncertainties from all detections in all four IRAC channels as well as compare the photometry and its uncertainties to those from models, ALLWISE, and the literature. 75% of our detections have standard deviations per star of all observations within each channel of less than three percent. The median standard deviations are 1.2, 1.3, 1.1, and 1.9% in [3.6] - [8.0] respectively. We find less than 8% standard deviations in differences of our photometry with ALLWISE, and excellent agreement with literature values (less than 3% difference) lending credence to our measured fluxes. JWST is poised to do ground-breaking science, and accurate calibration and cross-calibration with other missions will be part of the underpinnings of that science.
80 - Eric D. Feigelson 2017
We discuss how contemporary multiwavelength observations of young OB-dominated clusters address long-standing astrophysical questions: Do clusters form rapidly or slowly with an age spread? When do clusters expand and disperse to constitute the field star population? Do rich clusters form by amalgamation of smaller subclusters? What is the pattern and duration of cluster formation in massive star forming regions (MSFRs)? Past observational difficulties in obtaining good stellar censuses of MSFRs have been alleviated in recent studies that combine X-ray and infrared surveys to obtain rich, though still incomplete, censuses of young stars in MSFRs. We describe here one of these efforts, the MYStIX project, that produced a catalog of 31,784 probable members of 20 MSFRs. We find that age spread within clusters are real in the sense that the stars in the core formed after the cluster halo. Cluster expansion is seen in the ensemble of (sub)clusters, and older dispersing populations are found across MSFRs. Direct evidence for subcluster merging is still unconvincing. Long-lived, asynchronous star formation is pervasive across MSFRs.
OB associations are unbound groups of young stars made prominent by their bright OB members, and have long been thought to be the expanded remnants of dense star clusters. They have been important in astrophysics for over a century thanks to their lu minous massive stars, though their low-mass members have not been well studied until the last couple of decades. This has changed thanks to data from X-ray observations, spectroscopic surveys and astrometry from Gaia that allows their full stellar content to be identified and their dynamics to be studied, which in turn is leading to changes in our understanding of these systems and their origins, with the old picture of Blaauw (1964) now being superseded. It is clear now that OB associations have considerably more substructure than once envisioned, both spatially, kinematically and temporally. These changes have implications for the star formation process, the formation and evolution of planetary systems, and the build-up of stellar populations across galaxies.
We present here the first observation of galactic AGB stars with the InfraRed Array Camera (IRAC) onboard the Spitzer Space Telescope. Our sample consists of 48 AGB stars of different chemical signature, mass loss rate and variability class. For each star we have measured IRAC photometry and colors. Preliminary results shows that IRAC colors are sensitive to spectroscopic features associated to molecules and dust in the AGB wind. Period is only loosely correlated to the brightness of the stars in the IRAC bands. We do find, however, a tight period-color relation for sources classified as semiregular variables. This may be interpreted as the lack of warm dust in the wind of the sources in this class, as opposed to Mira variables that show higher infrared excess in all IRAC bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا