ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of the In-Gap Electronic Structure of LaAlO3 - SrTiO3 Heterointerfaces by Soft X-ray Spectroscopy

192   0   0.0 ( 0 )
 نشر من قبل A. Koitzsch
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated LAO - STO heterointerfaces grown either in oxygen rich or poor atmosphere by soft x-ray spectroscopy. Resonant photoemission across the Ti L$_{2,3}$ absorption edge of the valence band and Ti 2p core level spectroscopy directly monitor the impact of oxygen treatment upon the electronic structure. Two types of Ti$^{3+}$ related charge carriers are identified. One is located at the Fermi energy and related to the filling of the STO conduction band. It appears for low oxygen pressure only. The other one is centered at E$_{B}$ $approx$ 1 eV and independent of the oxygen pressure during growth. It is probably due to defects. The magnitude of both excitations is comparable. It is shown that low oxygen pressure is detrimental for the Ti - O bonding. Our results shed light on the nature of the charge carriers in the vicinity of the LAO - STO interface.



قيم البحث

اقرأ أيضاً

542 - G. Berner , M. Sing , F. Pfaff 2014
The electronic and magnetic properties of epitaxial LaNiO3/LaAlO3 superlattices can be tuned by layer thickness and substrate-induced strain. Here, we report on direct measurements of the k-space-resolved electronic structure of buried nickelate laye rs in superlattices under compressive strain by soft x-ray photoemission. After disentangling strong extrinsic contributions to the angle-dependent signal caused by photoelectron diffraction, we are able to extract Fermi surface information from our data. We find that with decreasing LaNiO3 thickness down to two unit cells (2 uc) quasiparticle coherence becomes strongly reduced, in accord with the dimension-induced metal-to-insulator transition seen in transport measurements. Nonetheless, on top of a strongly incoherent background a residual Fermi surface can be identified in the 2 uc superlattice whose nesting properties are consistent with the spin-density wave (SDW) instability recently reported. The overall behavior of the Ni 3d spectra and the absence of a complete gap opening indicate that the SDW phase is dominated by strong order parameter fluctuations.
GdNi is a ferrimagnetic material with a Curie temperature Tc = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorptio n spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) at T = 25 K in the ferrimagnetic phase. We analyze the Gd M$_{4,5}$-edge ($3d$ - $4f$) and Ni L$_{2,3}$-edge ($2p$ - $3d$) spectra using atomic multiplet and cluster model calculations, respectively. The atomic multiplet calculation for Gd M$_{4,5}$-edge XAS indicates that Gd is trivalent in GdNi, consistent with localized $4f$ states. On the other hand, a model cluster calculation for Ni L$_{2,3}$-edge XAS shows that Ni is effectively divalent in GdNi and strongly hybridized with nearest neighbour Gd states, resulting in a $d$-electron count of 8.57. The Gd M$_{4,5}$-edge XMCD spectrum is consistent with a ground state configuration of S = 7/2 and L=0. The Ni L$_{2,3}$-edge XMCD results indicate that the antiferromagnetically aligned Ni moments exhibit a small but finite magnetic moment ( $m_{tot}$ $sim$ 0.12 $mu_B$ ) with the ratio $m_{o}/m_{s}$ $sim$ 0.11. Valence band hard x-ray photoemission spectroscopy shows Ni $3d$ features at the Fermi level, confirming a partially filled $3d$ band, while the Gd $4f$ states are at high binding energies away from the Fermi level. The results indicate that the Ni $3d$ band is not fully occupied and contradicts the charge-transfer model for rare-earth based alloys. The obtained electronic parameters indicate that GdNi is a strongly correlated charge transfer metal with the Ni on-site Coulomb energy being much larger than the effective charge-transfer energy between the Ni $3d$ and Gd $4f$ states.
We investigated the electronic structure of the SrTiO$_3$/LaAlO$_3$ superlattice (SL) by resonant soft x-ray scattering. The (003) peak, which is forbidden for our ideal SL structure, was observed at all photon energies, indicating reconstruction at the interface. From the peak position analyses taking into account the effects of refraction, we obtained evidence for electronic reconstruction of Ti 3d and O $2p$ states at the interface. From reflectivity analyses, we concluded that the AlO$_2$/LaO/TiO$_2$/SrO and the TiO$_2$/SrO/AlO$_2$/LaO interfaces are quite different, leading to highly asymmetric properties.
Soft and hard X-ray photoelectron spectroscopy (PES) has been performed for one of the heavy fermion system CeRu$_2$Si$_2$ and a $4f$-localized ferromagnet CeRu$_2$Ge$_2$ in the paramagnetic phase. The three-dimensional band structures and Fermi surf ace (FS) shapes of CeRu$_2$Si$_2$ have been determined by soft X-ray $h u$-dependent angle resolved photoelectron spectroscopy (ARPES). The differences in the Fermi surface topology and the non-$4f$ electronic structures between CeRu$_2$Si$_2$ and CeRu$_2$Ge$_2$ are qualitatively explained by the band-structure calculation for both $4f$ itinerant and localized models, respectively. The Ce valences in CeRu$_2X_2$ ($X$ = Si, Ge) at 20 K are quantitatively estimated by the single impurity Anderson model calculation, where the Ce 3d hard X-ray core-level PES and Ce 3d X-ray absorption spectra have shown stronger hybridization and signature for the partial $4f$ contribution to the conduction electrons in CeRu$_2$Si$_2$.
341 - M. Sing , G. Berner , K. Goss 2009
The conducting interface of LaAlO$_3$/SrTiO$_3$ heterostructures has been studied by hard X-ray photoelectron spectroscopy. From the Ti~2$p$ signal and its angle-dependence we derive that the thickness of the electron gas is much smaller than the pro bing depth of 4 nm and that the carrier densities vary with increasing number of LaAlO$_3$ overlayers. Our results point to an electronic reconstruction in the LaAlO$_3$ overlayer as the driving mechanism for the conducting interface and corroborate the recent interpretation of the superconducting ground state as being of the Berezinskii-Kosterlitz-Thouless type.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا