ﻻ يوجد ملخص باللغة العربية
We calculate the double resonant (DR) Raman spectrum of graphene, and determine the lines associated to both phonon-defect processes, and two-phonons ones. Phonon and electronic dispersions reproduce calculations based on density functional theory corrected with GW. Electron-light, -phonon, and -defect scattering matrix elements and the electronic linewidth are explicitly calculated. Defect-induced processes are simulated by considering different kind of idealized defects. For an excitation energy of $epsilon_L=2.4$ eV, the agreement with measurements is very good and calculations reproduce: the relative intensities among phonon-defect or among two-phonon lines; the measured small widths of the D, $D$, 2D and $2D$ lines; the line shapes; the presence of small intensity lines in the 1800, 2000 cm$^{-1}$ range. We determine how the spectra depend on the excitation energy, on the light polarization, on the electronic linewidth, on the kind of defects and on their concentration. According to the present findings, the intensity ratio between the $2D$ and 2D lines can be used to determine experimentally the electronic linewidth. The intensity ratio between the $D$ and $D$ lines depends on the kind of model defect, suggesting that this ratio could possibly be used to identify the kind of defects present in actual samples. Charged impurities outside the graphene plane provide an almost undetectable contribution to the Raman signal.
By computing the double-resonant Raman scattering cross-section completely from first principles and including electron-electron interaction at the $GW$ level, we unravel the dominant contributions for the double-resonant 2D-mode in bilayer graphene.
Broadening of the Raman scattering (RS) spectra was studied in monolayer graphene samples irradiated with various dose of ions followed by annealing of radiation damage at different temperatures. It is shown that the width {Gamma} (full width at half
The line shape of the double-resonant $2D$ Raman mode in bilayer graphene is often considered to be characteristic for a certain laser excitation energy. Here, in a joint experimental and theoretical study, we analyze the dependence of the double-res
The Raman 2D line of graphene is widely used for device characterization and during device fabrication as it contains valuable information on e.g. the direction and magnitude of mechanical strain and doping. Here we present systematic asymmetries in
We present electronic structure calculations of twisted double bilayer graphene (TDBG): A tetralayer graphene structure composed of two AB-stacked graphene bilayers with a relative rotation angle between them. Using first-principles calculations, we