ﻻ يوجد ملخص باللغة العربية
In this review we provide an organized summary of the theoretical and computational results which are available for polymers subject to spatial or topological constraints. Because of the interdisciplinary character of the topic, we provide an accessible, non-specialist introduction to the main topological concepts, polymer models, and theoretical/computational methods used to investigate dense and entangled polymer systems. The main body of our review deals with: (i) the effect that spatial confinement has on the equilibrium topological entanglement of one or more polymer chains and (ii) the metric and entropic properties of polymer chains with fixed topological state. These problems have important technological applications and implications for the life-sciences. Both aspects, especially the latter, are amply covered. A number of selected open problems are finally highlighted.
We develop a theoretical description of the topological disentanglement occurring when torus knots reach the ends of a semi-flexible polymer under tension. These include decays into simpler knots and total unknotting. The minimal number of crossings
In the first part of this work a summary is provided of some recent experiments and theoretical results which are relevant in the research of systems of polymer rings in nontrivial topological conformations. Next, some advances in modeling the behavi
The coupling of active, self-motile particles to topological constraints can give rise to novel non-equilibrium dynamical patterns that lack any passive counterpart. Here we study the behavior of self-propelled rods confined to a compact spherical ma
In this work a new strategy is proposed in order to build analytic and microscopic models of fluctuating polymer rings subjected to topological constraints. The topological invariants used to fix these constraints belong to a wide class of the so-cal
We map the problem of self-avoiding random walks in a Theta solvent with a chemical potential for writhe to the three-dimensional symmetric U(N)-Chern-Simons theory as N goes to 0. We find a new scaling regime of topologically constrained polymers, w