ﻻ يوجد ملخص باللغة العربية
In this paper we find a realization for the DB-boundary conditions, which imposes vanishing normal derivatives of the normal components of the D and B fields. The implementation of the DB boundary, requiring vanishing normal components of D and B, is known. It is shown that the realization of the DB boundary can be based on a layer of suitable metamaterial, called the wave-guiding quarter-wave transformer, which transforms the DB boundary to the DB boundary. In an appendix, the mixed-impedance boundary, which is a generalization of both DB and DB boundaries, is shown to transform to another mixed-impedance boundary through the same transformer.
We consider the free boundary condition Gibbs measure of the Potts model on a random tree. We provide an explicit temperature interval below the ferromagnetic transition temperature for which this measure is extremal, improving older bounds of Mossel
The Bargmann-Wigner (BW) framework describes particles of spin-j in terms of Dirac spinors of rank 2j, obtained as the local direct product of n Dirac spinor copies, with n=2j. Such spinors are reducible, and contain also (j,0)+(0,j)-pure spin repres
Implementing the modal method in the electromagnetic grating diffraction problem delivered by the curvilinear coordinate transformation yields a general analytical solution to the 1D grating diffraction problem in a form of a T-matrix. Simultaneously
We introduce and study the mechanical system which describes the dynamics and statics of rigid bodies of constant density floating in a calm incompressible fluid. Since much of the standard equilibrium theory, starting with Archimedes, allows bodies
The geodesic has a fundamental role in physics and in mathematics: roughly speaking, it represents the curve that minimizes the arc length between two points on a manifold. We analyze a basic but misinterpreted difference between the Lagrangian that