ﻻ يوجد ملخص باللغة العربية
We propose an extended Schmidt law with explicit dependence of the star formation efficiency (SFE=SFR/Mgas) on the stellar mass surface density. This relation has a power-law index of 0.48+-0.04 and an 1-sigma observed scatter on the SFE of 0.4 dex, which holds over 5 orders of magnitude in the stellar density for individual global galaxies including various types especially the low-surface-brightness (LSB) galaxies that deviate significantly from the Kennicutt-Schmidt law. When applying it to regions at sub-kpc resolution of a sample of 12 spiral galaxies, the extended Schmidt law not only holds for LSB regions but also shows significantly smaller scatters both within and across galaxies compared to the Kennicutt-Schmidt law. We argue that this new relation points to the role of existing stars in regulating the SFE, thus encoding better the star formation physics. Comparison with physical models of star formation recipes shows that the extended Schmidt law can be reproduced by some models including gas free-fall in a stellar-gravitational potential and pressure-supported star formation. By implementing this new law into the analytic model of gas accretion in Lambda CDM, we show that it can re-produce the observed main sequence of star-forming galaxies (a relation between the SFR and stellar mass) from z=0 up to z=2.
We revisit the proposed extended Schmidt law (Shi et al. 2011) which points that the star formation efficiency in galaxies depends on the stellar mass surface density, by investigating spatially-resolved star formation rates (SFRs), gas masses and st
We compile observations of molecular gas contents and infrared-based star formation rates (SFRs) for 112 circumnuclear star forming regions, in order to re-investigate the form of the disk-averaged Schmidt surface density star formation law in starbu
We use a new method to trace backwards the star formation history of the Milky Way disk, using a sample of M dwarfs in the solar neighbourhood which is representative for the entire solar circle. M stars are used because they show H_alpha emission un
We present an analysis of the global and spatially-resolved Kennicutt-Schmidt (KS) star formation relation in the FIRE (Feedback In Realistic Environments) suite of cosmological simulations, including halos with $z = 0$ masses ranging from $10^{10}$
Measurements of H-alpha, HI, and CO distributions in 61 normal spiral galaxies are combined with published far-infrared and CO observations of 36 infrared-selected starburst galaxies, in order to study the form of the global star formation law, over